Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277908

RESUMO

OBJECTIVE: The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN: Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS: PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 µÉ› were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION: Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.


Assuntos
Cartilagem Articular , Meios de Contraste , Animais , Bovinos , Cartilagem Articular/patologia , Coloração e Rotulagem , Tomografia Computadorizada por Raios X/métodos , Raios X
2.
Acta Biomater ; 164: 303-316, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072066

RESUMO

To improve the current treatment for vascular diseases, such as vascular grafts, intravascular stents, and balloon angioplasty intervention, the evaluation of the native blood vessel microstructure in full 3D could be beneficial. For this purpose, we used contrast-enhanced X-ray microfocus computed tomography (CECT): a combination of X-ray microfocus computed tomography (microCT) and contrast-enhancing staining agents (CESAs) containing high atomic number elements. In this work, we performed a comparative study based on staining time and contrast-enhancement of 2 CESAs: Monolacunary and 1:2 Hafnium-substituted Wells-Dawson polyoxometalate (Mono-WD POM and Hf-WD POM, respectively) for imaging of the porcine aorta. After showing the advantages of Hf-WD POM in terms of contrast enhancement, we expanded our imaging to other species (rat, porcine, and human) and other types of blood vessels (porcine aorta, femoral artery, and vena cava), clearly indicating microstructural differences between different types of blood vessels and different species. We then showed the possibility to extract useful 3D quantitative information from the rat and porcine aortic wall, potentially to be used for computational modeling or for future design optimization of graft materials. Finally, a structural comparison with existing synthetic vascular grafts was made. This information will allow to better understand the in vivo functioning of native blood vessels and to improve the current disease treatments. STATEMENT OF SIGNIFICANCE: Synthetic vascular grafts, used as treatment for some cardiovascular diseases, still often fail clinically, potentially because of a mismatch in mechanical behaviour between the native blood vessel and the graft. To better understand the causes of this mismatch, we studied the full 3D microstructure of blood vessels. For this, we identified Hafnium-substituted Wells-Dawson polyoxometalate as contrast-enhancing staining agent to perform contrast-enhanced X-ray microfocus computed tomography. This technique allowed to show important differences in the microstructure of different types of blood vessels and in different species, as well as with that of synthetic grafts. This information can lead to a better understanding of the functioning of blood vessels and will allow to improve current disease treatments, such as vascular grafts.


Assuntos
Prótese Vascular , Háfnio , Humanos , Ratos , Animais , Suínos , Microtomografia por Raio-X , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...