Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 37(3): 705-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388450

RESUMO

A microtiter plate-based assay was developed to evaluate the ability of lipases to perform transesterifications when employed in different organic solvents. A 4-nitrophenol assay was carried out employing seven different lipase formulations and two fatty acid methyl esters with different chain lengths in a total of six organic solvents with logP values approximately between 1 and -1. This assay delivered results within comparatively short times measured by a color reaction and thus facilitates the choice of an enzyme-solvent combination for the synthesis of glycolipids. To validate the findings, glycolipid syntheses were performed using the same lipase formulation in the same solvents. When comparing the results obtained using the microtiter plate-based assay to the results of the glycolipid syntheses using the same lipases and solvents, matching results were obtained.


Assuntos
Colorimetria/métodos , Inibidores Enzimáticos/metabolismo , Esterificação , Lipase/antagonistas & inibidores , Lipase/metabolismo , Solventes/metabolismo , Nitrofenóis/análise
2.
J Biotechnol ; 162(4): 366-80, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-22728388

RESUMO

The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should combine a holistic X-omics strategy with metabolic engineering to achieve the next step in rhamnolipid production based on non-food renewable resources. This review discusses different approaches towards optimization of rhamnolipid production and enhancement of product spectra. The optimization of rhamnolipid production with P. aeruginosa strains, screening methods for new non-pathogenic natural rhamnolipid producers and recombinant rhamnolipid production are examined. Finally, biocatalysis with rhamnolipids for the synthesis of l-rhamnose, ß-hydroxyfatty acids, and tailor-made surfactants is discussed. Biosurfactants are still in the phase of initial commercialization. However, for next generation development of rhamnolipid production processes and next generation biosurfactants there are still considerable obstacles to be surmounted, which are discussed here.


Assuntos
Biotecnologia/métodos , Glicolipídeos/biossíntese , Glicolipídeos/química , Tensoativos/química , Tensoativos/metabolismo , Burkholderia/metabolismo , Glicolipídeos/síntese química , Pseudomonas/metabolismo , Tensoativos/síntese química
3.
Biotechnol Prog ; 27(2): 555-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21302369

RESUMO

New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.


Assuntos
Cinética , Nefelometria e Turbidimetria/métodos , Peptídeo Hidrolases/metabolismo , Suspensões/química , Enzimas/metabolismo , Luz , Fragmentos de Peptídeos/análise , Proteínas/análise , Espalhamento de Radiação , Serina Proteases/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...