Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
NAR Genom Bioinform ; 6(2): lqae061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846349

RESUMO

Population genomics has revolutionized our ability to study bacterial evolution by enabling data-driven discovery of the genetic architecture of trait variation. Genome-wide association studies (GWAS) have more recently become accompanied by genome-wide epistasis and co-selection (GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact multiple loci across the genome. However, existing GWES methods only consider associations between distant pairs of loci within the genome due to the strong impact of linkage-disequilibrium (LD) over short distances. Based on the general functional organisation of genomes it is nevertheless expected that majority of co-selection and epistasis will act within relatively short genomic proximity, on co-variation occurring within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LDWeaver to efficiently generate hypotheses about co-selection using large genomic surveys of multiple major human bacterial pathogen species and validate several findings using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial evolution in the light of rapidly expanding population genomic data.

2.
Nat Commun ; 15(1): 5196, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890378

RESUMO

Multi-drug resistant (MDR) E. coli constitute a major public health burden globally, reaching the highest prevalence in the global south yet frequently flowing with travellers to other regions. However, our comprehension of the entire genetic diversity of E. coli colonising local populations remains limited. We quantified this diversity, its associated antimicrobial resistance (AMR), and assessed the impact of antibiotic use by recruiting 494 outpatients and 423 community dwellers in the Punjab province, Pakistan. Rectal swab and stool samples were cultured on CLED agar and DNA extracted from plate sweeps was sequenced en masse to capture both the genetic and AMR diversity of E. coli. We assembled 5,247 E. coli genomes from 1,411 samples, displaying marked genetic diversity in gut colonisation. Compared with high income countries, the Punjabi population generally showed a markedly different distribution of genetic lineages and AMR determinants, while use of antibiotics elevated the prevalence of well-known globally circulating MDR clinical strains. These findings implicate that longitudinal multi-regional genomics-based surveillance of both colonisation and infections is a prerequisite for developing mechanistic understanding of the interplay between ecology and evolution in the maintenance and dissemination of (MDR) E. coli.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Paquistão/epidemiologia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Fezes/microbiologia , Feminino , Masculino , Genoma Bacteriano/genética , Adulto , Variação Genética , Pessoa de Meia-Idade , Adulto Jovem , Filogenia , Adolescente , Criança
3.
Euro Surveill ; 29(23)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847120

RESUMO

BackgroundThe war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.AimTo investigate the genomic epidemiology of New Delhi metallo-ß-lactamase (NDM)-producing Providencia stuartii from Ukrainian patients among European countries.MethodsWhole-genome sequencing of 66 isolates sampled in 2022-2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five bla NDM-1-carrying-P. stuartii isolates underwent antimicrobial susceptibility testing (AST). Transferability to Escherichia coli of a bla NDM-1-carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing P. stuartii were gathered by questionnaire.ResultswgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised bla NDM-1-carrying-P. stuartii and the third bla NDM-5-carrying-P. stuartii. The bla NDM-1 clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The bla NDM-5 cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring bla NDM-1, bla OXA-10, bla CMY-16, rmtC and armA, which was transferrable in vitro and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam-avibactam. Patients with data on age (n = 41) were 19-74 years old; of 49 with information on sex, 38 were male.ConclusionXDR P. stuartii were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Providencia , Sequenciamento Completo do Genoma , beta-Lactamases , Humanos , Ucrânia/epidemiologia , beta-Lactamases/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Providencia/genética , Providencia/isolamento & purificação , Providencia/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Europa (Continente)/epidemiologia , Plasmídeos/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem
4.
FEMS Microbes ; 5: xtae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606354

RESUMO

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

5.
Lancet Microbe ; 5(2): e142-e150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219757

RESUMO

BACKGROUND: The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection. METHODS: We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254). Defined daily dose (DDD) data from the European Centre for Disease Prevention and Control (retrieved on Sept 21, 2021) for major antibiotic classes (ß-lactam, tetracycline, macrolide, sulfonamide, quinolone, and non-penicillin ß-lactam) were used together with sequence typing, resistance profiling, regression analysis, and non-neutral Wright-Fisher simulation-based modelling to enable systematic comparison of resistance levels, clone success, and antibiotic usage between the UK and Norway. FINDINGS: Sequence type (ST)73, ST131, ST95, and ST69 accounted for 892 (49·3%) of 1808 isolates in the BSAC collection. In the UK, the proportion of ST69 increased between 2001-10 and 2011-17 (p=0·0004), whereas the proportions of ST73 and ST95 did not vary between periods. ST131 expanded quickly after its emergence in 2003 and its prevalence remained consistent throughout the study period (apart from a brief decrease in 2009-10). The extended-spectrum ß-lactamase (ESBL)-carrying, globally disseminated MDR clone ST131-C2 showed overall greater success in the UK (154 [56·8%] of 271 isolates in 2003-17) compared with Norway (51 [18·3%] of 278 isolates in 2002-17; p<0·0001). DDD data indicated higher total use of antimicrobials in the UK, driven mainly by the class of non-penicillin ß-lactams, which were used between 2·7-times and 5·1-times more in the UK per annum (ratio mean 3·7 [SD 0·8]). This difference was associated with the higher success of the MDR clone ST131-C2 (pseudo-R2 69·1%). A non-neutral Wright-Fisher model replicated the observed expansion of non-MDR and MDR sequence types under higher DDD regimes. INTERPRETATION: Our study indicates that resistance profiles of contemporaneously successful clones can vary substantially, warranting caution in the interpretation of correlations between aggregate measures of resistance and antibiotic usage. Our study further suggests that in countries with low-to-moderate use of antibiotics, such as the UK and Norway, the extent of non-penicillin ß-lactam use modulates rather than determines the success of widely disseminated MDR ESBL-carrying E coli clones. Detailed understanding of underlying causal drivers of success is important for improved control of resistant pathogens. FUNDING: Trond Mohn Foundation, Marie Sklodowska-Curie Actions, European Research Council, Royal Society, and Wellcome Trust.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos de Coortes , beta-Lactamases/genética , beta-Lactamases/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Genômica , beta-Lactamas/farmacologia
6.
Clin Microbiol Infect ; 30(3): 396.e1-396.e5, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065364

RESUMO

OBJECTIVES: Enterococcus faecalis can adopt both a commensal and a nosocomial lifestyle, resisting numerous antibiotics. In this study, we aim to investigate the relationship between the cell wall (CW) thickness and decreased susceptibility to vancomycin (VD) in van-gene negative clinical isolates of E. faecalis (nMIC 8 = 2, nMIC 4 = 3, ST30, ST40, and ST59). METHODS: The CW thickness was assessed in VD strains and compared with vancomycin susceptible isolates of the same sequence type (ST) (Vancomycin susceptible [VS]; nMIC 2 = 5). The VD and VS strains were subjected to serial passage (evolved [ev]) with and without vancomycin selection. Subsequent measurements of CW thickness and vancomycin MICs were performed. RESULTS: The VD strains exhibited increased CW thickness when compared with ST-related VS strains (ΔCW thickness VD vs. VS ST30 25 nm, ST59 15 nm, and ST40 1 nm). Serial passages without vancomycin selection led to a decrease in CW thickness and vancomycin MIC in VD strains (ΔCW thickness VD vs. evVD ST30 22 nm, ST59 3 nm, and ST40 2 nm). Serial passages with vancomycin selection caused an increase in CW thickness and vancomycin MIC in ST-related VS strains (ΔCW thickness VS vs. evVS ST30 22 nm, ST59 16 nm, and ST40 1 nm). DISCUSSION: Adaptive changes in CW thickness were observed in response to vancomycin exposure. Increased CW thickness correlated with decreased vancomycin susceptibility, whereas decreased CW thickness correlated with increased vancomycin susceptibility. Core single nucleotide polymorphisms in the evolved mutants were mostly found in genes encoding proteins associated with the cytoplasm or the cytoplasmic membrane. The potential relevance of these adaptive changes is underlined by the observed phenotypes in clinical isolates. Our findings emphasize the importance of monitoring adaptive changes, as vancomycin-resistant enterococci infections are a growing concern.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Vancomicina/farmacologia , Enterococcus faecalis/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Parede Celular , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococcus faecium/genética
7.
J Glob Antimicrob Resist ; 36: 112-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38122982

RESUMO

OBJECTIVES: We describe the first tigecycline resistant enterococcal isolate in Norway and the mechanisms involved. MATERIAL AND METHODS: The Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res). received in 2022 an Enterococcus faecium blood culture isolate with decreased susceptibility to tigecycline from a hospitalized patient in the South-Eastern Norway Health region for confirmatory testing. K-res verified a tigecycline-resistant E. faecium (TigR) with broth microdilution MIC of 0.5 mg/L. The patient had received treatment with tigecycline because of an infection with a linezolid- and vancomycin-resistant but tigecycline susceptible E. faecium (TigS) 47 days prior to the detection of the corresponding tigecycline-resistant isolate. Whole-genome comparisons, cgMLST and SNP analyses revealed that the two ST117 strains were closely related. RESULTS: The TigR isolate showed a novel deletion of 2 amino acids (K57Y58) in a polymorphic region of ribosomal protein S10 previously associated with tigecycline resistance and a deletion of the tet(M) leader peptide previously related to increased expression of tet(M) and tigecycline resistance in enterococci. CONCLUSIONS: Genomic and epidemiological analyses confirm that the two E. faecium (TigR and TigS) are closely related isolates of the same strain and that the two deletions (in rpsJ and of tet(M) leader peptide) account for the tigecycline resistance in TigR.


Assuntos
Antibacterianos , Enterococcus faecium , Humanos , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Enterococcus faecium/genética , Minociclina , Testes de Sensibilidade Microbiana , Enterococcus , Sinais Direcionadores de Proteínas
8.
Microbiol Spectr ; 11(6): e0020123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811975

RESUMO

IMPORTANCE: Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Humanos , Fatores de Virulência/genética , Virulência/genética , Antibacterianos , Infecções por Bactérias Gram-Positivas/microbiologia
9.
NAR Genom Bioinform ; 5(3): lqad066, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435357

RESUMO

Extrachromosomal elements of bacterial cells such as plasmids are notorious for their importance in evolution and adaptation to changing ecology. However, high-resolution population-wide analysis of plasmids has only become accessible recently with the advent of scalable long-read sequencing technology. Current typing methods for the classification of plasmids remain limited in their scope which motivated us to develop a computationally efficient approach to simultaneously recognize novel types and classify plasmids into previously identified groups. Here, we introduce mge-cluster that can easily handle thousands of input sequences which are compressed using a unitig representation in a de Bruijn graph. Our approach offers a faster runtime than existing algorithms, with moderate memory usage, and enables an intuitive visualization, classification and clustering scheme that users can explore interactively within a single framework. Mge-cluster platform for plasmid analysis can be easily distributed and replicated, enabling a consistent labelling of plasmids across past, present, and future sequence collections. We underscore the advantages of our approach by analysing a population-wide plasmid data set obtained from the opportunistic pathogen Escherichia coli, studying the prevalence of the colistin resistance gene mcr-1.1 within the plasmid population, and describing an instance of resistance plasmid transmission within a hospital environment.

10.
Euro Surveill ; 28(27)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410381

RESUMO

IntroductionNational and regional carbapenemase-producing Enterobacterales (CPE) surveillance is essential to understand the burden of antimicrobial resistance, elucidate outbreaks, and develop infection-control or antimicrobial-treatment recommendations.AimThis study aimed to describe CPE and their epidemiology in Norway from 2015 to 2021.MethodsA nationwide, population-based observational study of all verified clinical and carriage CPE isolates submitted to the national reference laboratory was conducted. Isolates were characterised by antimicrobial susceptibility testing, whole genome sequencing (WGS) and basic metadata. Annual CPE incidences were also estimated.ResultsA total of 389 CPE isolates were identified from 332 patients of 63 years median age (range: 0-98). These corresponded to 341 cases, 184 (54%) being male. Between 2015 and 2021, the annual incidence of CPE cases increased from 0.6 to 1.1 per 100,000 person-years. For CPE-isolates with available data on colonisation/infection, 58% (226/389) were associated with colonisation and 38% (149/389) with clinical infections. WGS revealed a predominance of OXA-48-like (51%; 198/389) and NDM (34%; 134/389) carbapenemases in a diversified population of Escherichia coli and Klebsiella pneumoniae, including high-risk clones also detected globally. Most CPE isolates were travel-related (63%; 245/389). Although local outbreaks and healthcare-associated transmission occurred, no interregional spread was detected. Nevertheless, 18% (70/389) of isolates not directly related to import points towards potentially unidentified transmission routes. A decline in travel-associated cases was observed during the COVID-19 pandemic.ConclusionsThe close-to-doubling of CPE case incidence between 2015 and 2021 was associated with foreign travel and genomic diversity. To limit further transmission and outbreaks, continued screening and monitoring is essential.


Assuntos
COVID-19 , Infecções por Enterobacteriaceae , Humanos , Masculino , Feminino , Viagem , Epidemiologia Molecular , Pandemias , COVID-19/epidemiologia , Doença Relacionada a Viagens , Proteínas de Bactérias/genética , beta-Lactamases/genética , Escherichia coli , Klebsiella pneumoniae/genética , Infecções por Enterobacteriaceae/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Nat Commun ; 14(1): 3294, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322051

RESUMO

Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli , Infecções por Escherichia coli/microbiologia , Virulência/genética , Fatores de Virulência/genética , Proteínas de Escherichia coli/genética , Filogenia
12.
mSphere ; 8(4): e0002523, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37306968

RESUMO

The global prevalence of infections caused by extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E) is increasing, and for Escherichia coli, observations indicate that this is partly driven by community-onset cases. The ESBL-E population structure in the community is scarcely described, and data on risk factors for carriage are conflicting. Here, we report the prevalence and population structure of fecal ESBL-producing E. coli and Klebsiella pneumoniae (ESBL-Ec/Kp) in a general adult population, examine risk factors, and compare carriage isolates with contemporary clinical isolates. Fecal samples obtained from 4,999 participants (54% women) ≥40 years in the seventh survey of the population-based Tromsø Study, Norway (2015, 2016), were screened for ESBL-Ec/Kp. In addition, we included 118 ESBL-Ec clinical isolates from the Norwegian surveillance program in 2014. All isolates were whole-genome sequenced. Risk factors associated with carriage were analyzed using multivariable logistic regression. ESBL-Ec gastrointestinal carriage prevalence was 3.3% [95% confidence interval (CI) 2.8%-3.9%, no sex difference] and 0.08% (0.02%-0.20%) for ESBL-Kp. For ESBL-Ec, travel to Asia was the only independent risk factor (adjusted odds ratio 3.46, 95% CI 2.18-5.49). E. coli ST131 was most prevalent in both collections. However, the ST131 proportion was significantly lower in carriage (24%) versus clinical isolates (58%, P < 0.001). Carriage isolates were genetically more diverse with a higher proportion of phylogroup A (26%) than clinical isolates (5%, P < 0.001), indicating that ESBL gene acquisition occurs in a variety of E. coli lineages colonizing the gut. STs commonly related to extraintestinal infections were more frequent in clinical isolates also carrying a higher prevalence of antimicrobial resistance, which could indicate clone-associated pathogenicity.IMPORTANCEESBL-Ec and ESBL-Kp are major pathogens in the global burden of antimicrobial resistance. However, there is a gap in knowledge concerning the bacterial population structure of human ESBL-Ec/Kp carriage isolates in the community. We have examined ESBL-Ec/Kp isolates from a population-based study and compared these to contemporary clinical isolates. The large genetic diversity of carriage isolates indicates frequent ESBL gene acquisition, while those causing invasive infections are more clone dependent and associated with a higher prevalence of antibiotic resistance. The knowledge of factors associated with ESBL carriage helps to identify patients at risk to combat the spread of resistant bacteria within the healthcare system. Particularly, previous travel to Asia stands out as a major risk factor for carriage and should be considered in selecting empirical antibiotic treatment in critically ill patients.


Assuntos
Escherichia coli , Infecções por Klebsiella , Adulto , Humanos , Feminino , Masculino , Klebsiella pneumoniae , Estudos Transversais , Infecções por Klebsiella/microbiologia , beta-Lactamases/genética , Fatores de Risco , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica
13.
Euro Surveill ; 28(19)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166762

RESUMO

Whole genome sequencing data of 874 Escherichia coli isolates carrying bla NDM-5 from 13 European Union/European Economic Area countries between 2012 and June 2022 showed the predominance of sequence types ST167, ST405, ST410, ST361 and ST648, and an increasing frequency of detection. Nearly a third (30.6%) of these isolates were associated with infections and more than half (58.2%) were predicted to be multidrug-resistant. Further spread of E. coli carrying bla NDM-5 would leave limited treatment options for serious E. coli infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , União Europeia , Testes de Sensibilidade Microbiana , Europa (Continente)/epidemiologia
14.
Genome Res ; 33(1): 129-140, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669850

RESUMO

Horizontal gene transfer (HGT) plays a critical role in the evolution and diversification of many microbial species. The resulting dynamics of gene gain and loss can have important implications for the development of antibiotic resistance and the design of vaccine and drug interventions. Methods for the analysis of gene presence/absence patterns typically do not account for errors introduced in the automated annotation and clustering of gene sequences. In particular, methods adapted from ecological studies, including the pangenome gene accumulation curve, can be misleading as they may reflect the underlying diversity in the temporal sampling of genomes rather than a difference in the dynamics of HGT. Here, we introduce Panstripe, a method based on generalized linear regression that is robust to population structure, sampling bias, and errors in the predicted presence/absence of genes. We show using simulations that Panstripe can effectively identify differences in the rate and number of genes involved in HGT events, and illustrate its capability by analyzing several diverse bacterial genome data sets representing major human pathogens.


Assuntos
Evolução Molecular , Células Procarióticas , Humanos , Filogenia , Genoma Bacteriano , Transferência Genética Horizontal
15.
Nat Commun ; 13(1): 7417, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456554

RESUMO

Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.


Assuntos
Cesárea , Ecossistema , Feminino , Gravidez , Recém-Nascido , Humanos , Klebsiella , Metagenômica , Parto , Escherichia coli/genética
16.
Gigascience ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34891160

RESUMO

BACKGROUND: Bacterial whole-genome sequencing based on short-read technologies often results in a draft assembly formed by contiguous sequences. The introduction of long-read sequencing technologies permits those contiguous sequences to be unambiguously bridged into complete genomes. However, the elevated costs associated with long-read sequencing frequently limit the number of bacterial isolates that can be long-read sequenced. Here we evaluated the recently released 96 barcoding kit from Oxford Nanopore Technologies (ONT) to generate complete genomes on a high-throughput basis. In addition, we propose an isolate selection strategy that optimizes a representative selection of isolates for long-read sequencing considering as input large-scale bacterial collections. RESULTS: Despite an uneven distribution of long reads per barcode, near-complete chromosomal sequences (assembly contiguity = 0.89) were generated for 96 Escherichia coli isolates with associated short-read sequencing data. The assembly contiguity of the plasmid replicons was even higher (0.98), which indicated the suitability of the multiplexing strategy for studies focused on resolving plasmid sequences. We benchmarked hybrid and ONT-only assemblies and showed that the combination of ONT sequencing data with short-read sequencing data is still highly desirable (i) to perform an unbiased selection of isolates for long-read sequencing, (ii) to achieve an optimal genome accuracy and completeness, and (iii) to include small plasmids underrepresented in the ONT library. CONCLUSIONS: The proposed long-read isolate selection ensures the completion of bacterial genomes that span the genome diversity inherent in large collections of bacterial isolates. We show the potential of using this multiplexing approach to close bacterial genomes on a high-throughput basis.


Assuntos
Genoma Bacteriano , Nanoporos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
17.
Nat Commun ; 12(1): 1523, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750782

RESUMO

Enterococcus faecalis is a commensal and nosocomial pathogen, which is also ubiquitous in animals and insects, representing a classical generalist microorganism. Here, we study E. faecalis isolates ranging from the pre-antibiotic era in 1936 up to 2018, covering a large set of host species including wild birds, mammals, healthy humans, and hospitalised patients. We sequence the bacterial genomes using short- and long-read techniques, and identify multiple extant hospital-associated lineages, with last common ancestors dating back as far as the 19th century. We find a population cohesively connected through homologous recombination, a metabolic flexibility despite a small genome size, and a stable large core genome. Our findings indicate that the apparent hospital adaptations found in hospital-associated E. faecalis lineages likely predate the "modern hospital" era, suggesting selection in another niche, and underlining the generalist nature of this nosocomial pathogen.


Assuntos
Infecção Hospitalar/microbiologia , Enterococcus faecalis/genética , Animais , Antibacterianos , Aves , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Genes MDR/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Hospitais , Especificidade de Hospedeiro , Humanos , Filogenia , Fatores de Virulência , Sequenciamento Completo do Genoma
18.
Lancet Microbe ; 2(7): e331-e341, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544167

RESUMO

BACKGROUND: The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology. METHODS: This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22 512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002-10 and 2011-17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011. FINDINGS: Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002-10 to 207 (10·5%) of 1977 in 2011-17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum ß-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates). INTERPRETATION: The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones. FUNDING: Trond Mohn Foundation, European Research Council, Marie Sklodowska-Curie Actions, and the Wellcome Trust.


Assuntos
Infecções por Escherichia coli , Sepse , Antibacterianos/farmacologia , Estudos de Coortes , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Fluoroquinolonas/farmacologia , Humanos , Estudos Longitudinais , Metagenômica
19.
Front Microbiol ; 11: 549531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123101

RESUMO

Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.

20.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31900307

RESUMO

Listeria monocytogenes causes the severe foodborne illness listeriosis and survives in food-associated environments due to its high stress tolerance. A data assembly and analysis protocol for microbial growth experiments was compiled to elucidate the strain variability of L. monocytogenes stress tolerance. The protocol includes measurement of growth ability under stress (step 1), selection of a suitable method for growth parameter calculation (step 2), comparison of growth patterns between strains (step 3), and biological interpretation of the discovered differences (step 4). In step 1, L. monocytogenes strains (n = 388) of various serovars and origins grown on media with 9.0% NaCl were measured using a Bioscreen C microbiology reader. Technical variability of the growth measurements was assessed and eliminated. In step 2, the growth parameters determined by Gompertz, modified-Gompertz, logistic, and Richards models and model-free splines were compared, illustrating differences in the suitability of these methods to describe the experimental data. In step 3, hierarchical clustering was used to describe the NaCl tolerance of L. monocytogenes measured by strain-specific variation in growth ability; tolerant strains had higher growth rates and maximum optical densities and shorter lag phases than susceptible strains. The spline parameter area under the curve best classified "poor," "average," and "good" growers. In step 4, the tested L. monocytogenes lineage I strains (serovars 4b and 1/2b) proved to be significantly more tolerant toward 9.0% NaCl than lineage II strains (serovars 1/2a, 1/2c, and 3a). Our protocol provides systematic tools to gain comparable data for investigating strain-specific variation of bacterial growth under stress.IMPORTANCE The pathogen Listeria monocytogenes causes the foodborne disease listeriosis, which can be fatal in immunocompromised individuals. L. monocytogenes tolerates several environmental stressors and can persist in food-processing environments and grow in foodstuffs despite traditional control measures such as high salt content. Nonetheless, L. monocytogenes strains differ in their ability to withstand stressors. Elucidating the intraspecies strain variability of L. monocytogenes stress tolerance is crucial for the identification of particularly tolerant strains. To enhance reliable identification of variability in bacterial stress tolerance phenotypes, we compiled a large-scale protocol for the entire data assembly and analysis of microbial growth experiments, providing a systematic approach and checklist for experiments on strain-specific growth ability. Our study illustrated the diversity and strain-specific variation of L. monocytogenes stress tolerance with an unprecedented scope and discovered biologically relevant serovar- and lineage-dependent phenotypes of NaCl tolerance.


Assuntos
Listeria monocytogenes/fisiologia , Estresse Salino/genética , Cloreto de Sódio/efeitos adversos , Ensaios de Triagem em Larga Escala , Listeria monocytogenes/genética , Fenótipo , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...