Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.844
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38984575

RESUMO

BACKGROUND: Shen Qi Gui oral liquid (SQG) may be beneficial for chemotherapyinduced myelosuppression (CIM). However, the underlying mechanism of CIM treated with SQG is still lacking. METHODS: A total of 27 blood samples from cancer patients were selected to perform RNA-seq to obtain the Differentially Expressed Genes (DEGs). Then, the active components and target genes of SQG were acquired. Next, the drug targets and DEGs were intersected to obtain the intersection genes, followed by functional enrichment analysis and construction of a drug-compoundgene- disease network. Subsequently, core genes were selected. Then, immune cell infiltration, molecular docking, pharmacokinetic and toxicity prediction, and RT-qPCR were performed. RESULTS: A total of 1,341 DEGs, 51 active compounds, and 264 target genes were identified. Then, 30 intersection genes were acquired. Next, a drug-compound-gene-disease network was constructed, and 7 core genes were acquired. Immune infiltration analysis exhibited that only T follicular helper cells were significantly increased in the CIM group, which was significantly negatively correlated with MAPK1, MAPK14, MCL1, PTEN, and PTGS2. The luteolin, quercetin, and beta-sitosterol showed better affinity with core genes. Luteolin and quercetin, which satisfied Lipinski's rule of five, were likely absorbed by the gastrointestinal system. Toxicity predictions showed that neither luteolin nor quercetin exhibited carcinogenicity or hepatotoxicity. CONCLUSION: PTEN, PTGS2, CCL2, FOS, MCL1, MAPK1, and MAPK14 were identified as the core genes in CIM patients, which were involved in the MAPK and PI3K-Akt signaling pathways. Luteolin and quercetin may be the promising drugs against CIM.

2.
Sci Rep ; 14(1): 15478, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969765

RESUMO

Colorectal cancer (CRC) is a common digestive system tumor with high morbidity and mortality worldwide. At present, the use of computer-assisted colonoscopy technology to detect polyps is relatively mature, but it still faces some challenges, such as missed or false detection of polyps. Therefore, how to improve the detection rate of polyps more accurately is the key to colonoscopy. To solve this problem, this paper proposes an improved YOLOv5-based cancer polyp detection method for colorectal cancer. The method is designed with a new structure called P-C3 incorporated into the backbone and neck network of the model to enhance the expression of features. In addition, a contextual feature augmentation module was introduced to the bottom of the backbone network to increase the receptive field for multi-scale feature information and to focus on polyp features by coordinate attention mechanism. The experimental results show that compared with some traditional target detection algorithms, the model proposed in this paper has significant advantages for the detection accuracy of polyp, especially in the recall rate, which largely solves the problem of missed detection of polyps. This study will contribute to improve the polyp/adenoma detection rate of endoscopists in the process of colonoscopy, and also has important significance for the development of clinical work.


Assuntos
Algoritmos , Pólipos do Colo , Colonoscopia , Neoplasias Colorretais , Humanos , Colonoscopia/métodos , Pólipos do Colo/diagnóstico , Pólipos do Colo/diagnóstico por imagem , Pólipos do Colo/patologia , Neoplasias Colorretais/diagnóstico , Redes Neurais de Computação , Semântica , Interpretação de Imagem Assistida por Computador/métodos
3.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971798

RESUMO

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
5.
MycoKeys ; 106: 225-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974461

RESUMO

Botryosphaeriales species are important pathogens that have worldwide distribution. In this study, 23 Botryosphaeriales strains were isolated from 13 host species during a dieback disease survey in Beijing, China. Based on morphological and phylogenetic analyses, six Botryosphaeriales species were identified, including two new species named Dothiorellahortiarborum sp. nov. and Phaeobotryonfraxini sp. nov., and four new host records: Aplosporellaginkgonis from Cotinuscoggygriavar.cinereus, A.javeedii from Acermiyabei, Acertruncatum, Forsythiasuspensa, Lagerstroemiaindica, Sambucuswilliamsii, Syringavulgaris, Ulmuspumila, Xanthocerassorbifolium, A.yanqingensis from Acertruncatum, and Do.acericola from Forsythiasuspensa, Ginkgobiloba, and Syringaoblata. This study enriches the species diversity associated with tree dieback in Beijing, China, and contributes to the further study of the taxonomy of this order.

6.
Small ; : e2402141, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953313

RESUMO

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

7.
Anal Bioanal Chem ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951148

RESUMO

Ferroptosis is a way of cell death mainly due to the imbalance between the production and degradation of lipid reactive oxygen species, which is closely associated with various diseases. Endogenous hypochlorous acid (HOCl) mainly produced in mitochondria is regarded as an important signal molecule of ferroptosis. Therefore, monitoring the fluctuation of endogenous HOCl is beneficial to better understand and treat ferroptosis-related diseases. Inspired by the promising aggregation-induced emission (AIE) properties of tetraphenylethene (TPE), herein, we rationally constructed a novel AIE-based fluorescent probe, namely QTrPEP, for HOCl with nice mitochondria-targeting ability and high sensitivity and selectivity. Probe QTrPEP consisted of phenylborate ester and the AIE fluorophore of quinoline-conjugated triphenylethylene (QTrPE). HOCl can brighten the strong fluorescence through a specific HOCl-triggered cleavage of the phenylborate ester bond and release of QTrPE, which has been demonstrated by MS, HPLC, and DLS experiments. In addition, combining QTrPE-doped test strips with a smartphone-based measurement demonstrated the excellent performance of the probe to sense HOCl. The obtained favorable optical properties and negligible cytotoxicity allowed the use of this probe for tracking of HOCl in three different cells. In particular, this work represents the first AIE-based mitochondria-targeting fluorescent probe for monitoring the fluctuation of HOCl in ferroptosis.

8.
Front Psychol ; 15: 1289106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966725

RESUMO

Introduction: The Gaokao Word List (GWL) in China serves as a guideline for learning L2 vocabulary, but there are few studies verifying its effect on university EFL learners' vocabulary knowledge. Method: This study investigated the effects of the GWL and EFL proficiency on 66 Chinese university EFL learners' vocabulary knowledge by administering word recognition tests. Results and discussion: The results showed that: (1) the GWL had significant effects on participants' receptive vocabulary knowledge; (2) EFL proficiency had significant effects on participants' word recognition, without interaction with the GWL. These findings were discussed through the lens of frequency of exposure, accounting for the overwhelming GWL effect on learners' vocabulary knowledge. We suggest EFL proficiency be taken into consideration when the GWL is revised in the future, to smoothen the transition in vocabulary learning from high school to university, and improve vocabulary learning efficiency.

9.
Research (Wash D C) ; 7: 0410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966747

RESUMO

Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins, antibodies, and even cells. The study in Nature by Chang and Toste introduces a redox-based strategy for tryptophan bioconjugation, employing N-sulfonyloxaziridines as oxidative cyclization reagents, demonstrating high efficiency comparable to traditional click reactions. Meanwhile, this tool provides feasible methods for investigating the mechanisms underlying functional tryptophan-related biochemical processes, paving the way for protein function exploration, activity-based proteomics for functional amino acid identification and characterization, and even the design of covalent inhibitors.

10.
Cancer Lett ; : 217100, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969158

RESUMO

Immune checkpoint inhibitors (ICIs) cause immune-related adverse events (irAEs) across various organ systems including oral health complications such as dry mouth and stomatitis. In this study, we aimed to determine the risk of periodontitis among patients on immune checkpoint inhibitors (ICIs) and to test the associations between ICI-associated periodontitis and other immune-related adverse events (irAEs). We performed a retrospective cohort study involving adult cancer patients between January 2010 and November 2021. Patients on an ICI were propensity score-matched to patients not on an ICI. The primary outcome was the occurrence of periodontitis. ICIs included programmed cell death 1 (PD-1) inhibitors programmed cell death ligand 1 (PD-L1) inhibitors, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors. The risk of periodontitis following ICI use was derived through a Cox proportional hazard model and Kaplan-Meier survival analysis. Overall, 868 patients on an ICI were matched to patients not on an ICI. Among the ICI cohort, 41 (4.7%) patients developed periodontitis. The incidence rate of periodontitis was significantly higher in patients on an ICI than in patients not on an ICI (55.3 vs 25.8 per 100 patient-years, incidence rate ratio=2.14, 95% CI=1.38-3.33). Both the use of PD-L1 inhibitors (multivariate HR=2.5, 95%CI=1.3-4.7) and PD-1 inhibitors (multivariate HR=2.0, 95%CI=1.2-3.2) were associated with the risk of periodontitis. The presence of immune-related periodontitis was associated with better overall survival (not reached vs 17 months, log-rank p-value<0.001), progression-free survival (14.9 vs 5.6 months, log-rank p-value=0.01), and other concomitant immune-related cutaneous adverse events. In conclusion, ICI was associated with an increased risk of periodontitis. Immune-related periodontitis as an irAE was associated with better cancer survival and concomitant cutaneous irAEs.

11.
Anal Methods ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961688

RESUMO

The new generation of gene editing technologies, primarily based on CRISPR/Cas9 and its derivatives, allows for more precise editing of organisms. However, when the editing efficiency is low, only a small fraction of gene fragments is edited, leaving behind minimal traces and making it difficult to detect and evaluate the editing effects. Although a series of technologies and methods have been developed, they lack the ability for precise quantification and quantitative analysis of these products. Digital polymerase chain reaction (dPCR) offers advantages such as high precision and sensitivity, making it suitable for absolute quantification of nucleic acid samples. In the present study, we developed a novel platform for precise quantification of gene editing products based on microfluidic chip-based dPCR. The results indicated that our assay accurately identified different types of edited samples within a variety of different types, including more complex genomic crops such as tetraploid rapeseed and soybean (highly repetitive sequence). The sensitivity of this detection platform was as low as 8.14 copies per µL, with a detection limit of 0.1%. These results demonstrated the superior performance of the platform, including high sensitivity, low detection limit, and wide applicability, enabling precise quantification and assessment of gene editing efficiency. In conclusion, microfluidic chip-based dPCR was used as a powerful tool for precise quantification and assessment of gene editing products.

12.
Nat Prod Res ; : 1-8, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962949

RESUMO

The phytochemical investigation on the rhizomes of Paris yunnanensis Franch. resulted in the discovery and characterisation of six compounds, including two new saponins named parisyunnanosides M-N (1-2), and four known ones (3-6). The structures of isolated compounds were determined by spectroscopic data analysis and chemical methods. Compound 2 is a pregnane-type saponin with a special α,ß-unsaturated carboxylic acid moiety at C-17, which is first discovered in genus Paris. The anti-inflammatory activity of the isolated compounds was assessed in vitro. The results demonstrated that compounds 3 and 4 could significantly inhibit the production of NO which was induced by LPS in RAW 264.7 cells with IC50 values of 0.67 ± 0.17 µM and 0.85 ± 0.12 µM, respectively.

13.
Drug Deliv ; 31(1): 2372269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38956885

RESUMO

Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.


Assuntos
Acne Vulgar , Portadores de Fármacos , Folículo Piloso , Polímeros , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Acne Vulgar/tratamento farmacológico , Humanos , Polímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas , Administração Cutânea , Animais , Sistemas de Liberação de Fármacos por Nanopartículas/química
14.
Cancer Immunol Immunother ; 73(9): 175, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953994

RESUMO

Tumor immunotherapies targeting PD-(L)1 exhibit anti-tumor efficacy in only 10-30% of patients with various cancers. Literature has demonstrated that a "hot tumor" which contains high T lymphocytes in the tumor microenvironment exhibits a better response to immunotherapies than a "cold tumor." This study aimed to investigate whether tumor-intrinsic IFNα and CXCL10 determine the recruitment and activation of CD8+ T cells to become "hot tumor." In this study, we found that CXCL10 overexpressed in a variety of tumors including lung, colon, and liver tumors with a correlation with PD-L1. High PD-L1 and CXCL10 are associated with better survival rates in tumor patients receiving immunotherapies. IFNs-downstream transcriptional factor IRF-1 and STAT1 were correlated with PD-L1 and CXCL10 expression. We demonstrated that IRF-1 and STAT1 were both bound with the promoters of PD-L1 and CXCL10, sharing the same signaling pathway and determining IFNs-mediated PD-L1 and CXCL10 expression. In addition, IFNα significantly increased activation marker IFNγ in PBMCs, promoting M1 type monocyte differentiation, CD4+ T, and CD8+ T cell activation. Particularly, we found that CD8+ T lymphocytes abundantly expressed CXCR3, a receptor of CXCL10, by flow cytometry, indicating that tumor-intrinsic CXCL10 potentially recruited CD8+ T in tumor microenvironment. To demonstrate the hypothesis, immunotherapy-sensitive CT26 and immunotherapy-resistant LL/2 were used and we found that CT26 cells exhibited higher IFNα, IFNγ, CXCL10, and PD-L1 levels compared to LL/2, leading to higher IFNγ expression in mouse splenocytes. Moreover, we found that CD8+ T cells were recruited by CXCL10 in vitro, whereas SCH546738, an inhibitor of CXCR3, inhibited T cell migration and splenocytes-mediated anti-tumor effect. We then confirmed that CT26-derived tumor was sensitive to αPD-L1 immunotherapy and LL/2-tumor was resistant, whereas αPD-L1 significantly increased T lymphocyte activation marker CD107a in CT26-derived BALB/c mice. In conclusion, this study revealed that CXCL10 expression is correlated with PD-L1 in tumors, sharing the same signaling pathway and associating with better immunotherapeutic efficacy. Further evidence in the syngeneic tumor models demonstrated that immunotherapy-sensitive CT26 intrinsically exhibited higher IFNα and CXCL10 compared to immunotherapy-resistant LL/2 to recruit and activate CD8+ T cells in the tumor microenvironment, exhibiting "hot tumor" characteristic of sensitizing αPD-L1 immunotherapies.


Assuntos
Quimiocina CXCL10 , Imunoterapia , Interferon-alfa , Microambiente Tumoral , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Microambiente Tumoral/imunologia , Animais , Camundongos , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Feminino , Fator de Transcrição STAT1/metabolismo
16.
Diabetes Metab Syndr ; 18(6): 103068, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959546

RESUMO

BACKGROUND AND AIM: Clinical evidence for early identification and diagnosis of liver cirrhosis (LC) caused by different types of liver disease is limited. We investigated this topic through a meta-analysis of quantitative metabolomics. METHODS: Four databases were searched until October 31, 2022 for studies comparing metabolite levels between patients with different types of liver disease and control individuals. A random-effects model was applied for the meta-analysis. RESULTS: This study included 55 studies with 8266 clinical participants, covering 348 metabolites. In LC related to drug-induced liver injury (DILI), hepatitis B virus (HBV) infection, and non-alcoholic fatty liver disease (NAFLD), the primary bile acid biosynthesis (taurocholic acid: SMD, 1.08[0.81, 1.35]; P < 0.00001; glycocholic acid: SMD, 1.35[1.07, 1.62]; P < 0.00001; taurochenodeoxycholic acid: SMD, 1.36[0.94, 1.78]; P < 0.00001; glycochenodeoxycholic acid: SMD, 1.49[0.93, 2.06]; P < 0.00001), proline and arginine (l-proline: SMD, 1.06[0.53, 1.58]; P < 0.0001; hydroxyproline: SMD, 0.81[0.30, 1.33]; P = 0.002), and fatty acid biosynthesis (palmitic acid: SMD, 0.44[0.21, 0.67]; P = 0.0002; oleic acid: SMD, 0.46[0.19, 0.73]; P = 0.0008; stearic acid: SMD, 0.37[0.07, 0.68]; P = 0.02) metabolic pathways were significantly altered. CONCLUSION: We identified key biomarkers and metabolic characteristics for distinguishing and identifying LC related to different types of liver disease, providing a new perspective for early diagnosis, disease monitoring, and precise treatment.

17.
Phytomedicine ; 132: 155830, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959553

RESUMO

BACKGROUND: Liver fibrosis is a prevalent pathological process in chronic liver diseases characterized by excessive extracellular matrix (ECM) deposition and abnormal angiogenesis. Notably, hepatic stellate cells (HSCs) are the primary source of ECM. Activated HSCs not only secrete numerous pro-fibrotic cytokines but also are endowed with a pro-angiogenic phenotype to promote pathological angiogenesis. Therefore, targeted modulation of HSCs has emerged as a pivotal strategy for addressing liver fibrosis. Hydroxysafflor yellow A (HSYA) is a homology of medicine and food colourant with good pharmacological activity. However, the precise mechanisms of HSYA against liver fibrosis remain unclear. PURPOSE: The objective of this study was to elucidate the impact of HSYA on liver fibrosis and pathological angiogenesis, as well as the underlying mechanisms in vitro and in vivo studies. METHODS: The efficacy and mechanisms of HSYA on TGF-ß1-induced HSCs and VEGFA-induced endothelial cells were investigated by MTT assay, EdU cell proliferation assay, cell scratch assay, Elisa assay, immunofluorescence assay, molecular docking, cell transfection assay, western blot analysis and RT-qPCR analysis. In CCl4-induced liver fibrosis mice model, H&E, Masson, and Sirius red staining were used to observe histopathology. Serum transaminase activity and liver biochemical indexes were tested by biochemical kit. Immunohistochemical, fluorescence in situ hybridization (FISH), western blot analysis and RT-qPCR analysis were implemented to determine the mechanism of HSYA in vivo. RESULTS: Herein, our findings confirmed that HSYA inhibited the proliferation, migration and activation of HSCs, as evidenced by a reduction in cell viability, relative migration rate, EdU staining intensity, and pro-fibrotic mRNAs and proteins expression in vitro. Mechanistically, HSYA played an anti-fibrotic and anti-angiogenic role by partially silencing PDGFRB in activated HSCs, thereby disrupting PDGFRB/MEK/ERK signal transduction and inhibiting the expression of HIF-1α, VEGFA and VEGFR2 proteins. Importantly, PDGFRB was a target gene of miR-29a-3p. Treatment with HSYA reversed the down-regulation of miR-29a-3p and antagonized PDGFRB signaling pathway in TGF-ß1-induced HSCs transfected with miR-29a-3p inhibitor. Consistent with our in vitro study, HSYA exhibited a good hepatoprotective effect in CCl4-induced liver fibrosis mice by reducing serum ALT and AST levels, decreasing the contents of four fibrosis indicators (HA, PIIIP, ColIV and LN) and hydroxyproline, and inhibiting the TGF-ß1/TGFBR signaling pathway. In terms of mechanisms, HSYA alleviated pathological angiogenesis in fibrotic liver by deactivating PDGFRB signaling pathway and impairing the positive expression of CD31. Subsequently, FISH results further corroborated HSYA affected the activation of HSCs and angiogenesis achieved by the concurrent upregulation of miR-29a-3p and downregulation of α-SMA and VEGFA. Additionally, treatment with HSYA also forged a link between HSCs and endothelial cells, as supported by inhibiting the aberrant proliferation of endothelial cells. CONCLUSION: Fundamentally, the current study has illustrated that HSYA ameliorates liver fibrosis by repressing HSCs-mediated pro-fibrotic and pro-angiogenic processes, which is contingent upon the regulatory effect of HSYA on the miR-29a-3p/PDGFRB axis. These findings provide compelling evidence bolstering the potential of HSYA as a therapeutic agent in liver fibrosis.

18.
Dig Dis Sci ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965159

RESUMO

BACKGROUND: Chronic hepatitis C (CHC) increases the risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). This nationwide cohort study assessed the effectiveness of viral eradication of CHC. METHODS: The Taiwanese chronic hepatitis C cohort and Taiwan hepatitis C virus (HCV) registry are nationwide HCV registry cohorts incorporating data from 23 and 53 hospitals in Taiwan, respectively. This study included 27,577 individuals from these cohorts that were given a diagnosis of CHC and with data linked to the Taiwan National Health Insurance Research Database. Patients received either pegylated interferon and ribavirin or direct-acting antiviral agent therapy for > 4 weeks for new-onset LC and liver-related events. RESULTS: Among the 27,577 analyzed patients, 25,461 (92.3%) achieved sustained virologic response (SVR). The mean follow-up duration was 51.2 ± 48.4 months, totaling 118,567 person-years. In the multivariable Cox proportional hazard analysis, the hazard ratio (HR) for incident HCC was 1.39 (95% confidence interval [CI]: 1.00-1.95, p = 0.052) among noncirrhotic patients without SVR compared with those with SVR and 1.82 (95% CI 1.34-2.48) among cirrhotic patients without SVR. The HR for liver-related events, including HCC and decompensated LC, was 1.70 (95% CI 1.30-2.24) among cirrhotic patients without SVR. Patients with SVR had a lower 10-year cumulative incidence of new-onset HCC than those without SVR did (21.7 vs. 38.7% in patients with LC, p < 0.001; 6.0 vs. 18.4% in patients without LC, p < 0.001). CONCLUSION: HCV eradication reduced the incidence of HCC in patients with and without LC and reduced the incidence of liver-related events in patients with LC.

19.
Food Chem ; 456: 140064, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38878548

RESUMO

Cysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM). Furthermore, the NIT-Cys probe has been successfully used not only to quantify the amounts of Cys in selected food samples, but also to enable the visualization of endogenous Cys in acetaminophen (APAP)-induced drug-induced liver injury cells, zebrafish larvae and mice models. Consequently, the work presented here provides an efficient tool for monitoring Cys.

20.
Immun Inflamm Dis ; 12(6): e1319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888448

RESUMO

OBJECTIVE: Bone mesenchymal stem cells (BMSCs) have been tentatively applied in the treatment of glucocorticoid-induced osteoporosis (GIOP) and systemic lupus erythematosus (SLE). However, the effects of BMSCs on osteoporosis within the context of glucocorticoid (GC) application in SLE remain unclear. Our aim was to explore the roles of BMSCs and different doses of GC interventions on osteoporosis in SLE murine models. METHODS: MRL/MpJ-Faslpr mice were divided into eight groups with BMSC treatment and different dose of GC intervention. Three-dimensional imaging analysis and hematoxylin and eosin (H&E) staining were performed to observe morphological changes. The concentrations of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in serum were measured by enzyme-linked immunosorbent assay (ELISA). The subpopulation of B cells and T cells in bone marrows and spleens were analyzed by flow cytometry. Serum cytokines and chemokines were assessed using Luminex magnetic bead technology. RESULTS: BMSCs ameliorated osteoporosis in murine SLE models by enhancing bone mass, improving bone structure, and promoting bone formation through increased bone mineral content and optimization of trabecular morphology. BMSC and GC treatments reduced the number of B cells in bone marrows, but the effect was not significant in spleens. BMSCs significantly promoted the expression of IL-10 while reducing IL-18. Moreover, BMSCs exert immunomodulatory effects by reducing Th17 expression and rectifying the Th17/Treg imbalance. CONCLUSION: BMSCs effectively alleviate osteoporosis induced by SLE itself, as well as osteoporosis resulting from SLE combined with various doses of GC therapy. The therapeutic effects of BMSCs appear to be mediated by their influence on bone marrow B cells, T cell subsets, and associated cytokines. High-dose GC treatment exerts a potent anti-inflammatory effect but may hinder the immunotherapeutic potential of BMSCs. Our research may offer valuable guidance to clinicians regarding the use of BMSC treatment in SLE and provide insights into the judicious use of GCs in clinical practice.


Assuntos
Modelos Animais de Doenças , Glucocorticoides , Lúpus Eritematoso Sistêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoporose , Animais , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Osteoporose/etiologia , Osteoporose/tratamento farmacológico , Osteoporose/terapia , Glucocorticoides/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Feminino , Camundongos Endogâmicos MRL lpr , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...