Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20154252

RESUMO

BackgroundSevere COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis-like disease observed in severe COVID-19 is currently unknown. MethodsWe determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution. ResultsThe presence of SARS-CoV-2-RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2-RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21 - 16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 - 0.89), <0.001]), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 - 0.88], <0.001). Conclusionssystemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-164384

RESUMO

Covid-19, caused by the SARS-CoV-2 virus, has reached the category of a worldwide pandemic. Even though intensive efforts, no effective treatments or a vaccine are available. Molecular characterization of the transcriptional response in Covid-19 patients could be helpful to identify therapeutic targets. In this study, RNAseq data from peripheral blood mononuclear cell samples from Covid-19 patients and healthy controls was analyzed from a functional point of view using probabilistic graphical models. Two networks were built: one based on genes differentially expressed between healthy and infected individuals and another one based on the 2,000 most variable genes in terms of expression in order to make a functional characterization. In the network based on differentially expressed genes, two inflammatory response nodes with different tendencies were identified, one related to cytokines and chemokines, and another one related to bacterial infections. In addition, differences in metabolism, which were studied in depth using Flux Balance Analysis, were identified. SARS-CoV2-infection caused alterations in glutamate, methionine and cysteine, and tetrahydrobiopterin metabolism. In the network based on 2,000 most variable genes, also two inflammatory nodes with different tendencies between healthy individuals and patients were identified. Similar to the other network, one was related to cytokines and chemokines. However, the other one, lower in Covid-19 patients, was related to allergic processes and self-regulation of the immune response. Also, we identified a decrease in T cell node activity and an increase in cell division node activity. In the current absence of treatments for these patients, functional characterization of the transcriptional response to SARS-CoV-2 infection could be helpful to define targetable processes. Therefore, these results may be relevant to propose new treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...