Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 8(1): 43, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252825

RESUMO

A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid ß (Aß) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aß morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aß peptides, the levels and length of Aß that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aß morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aß deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aß deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aß40 and Aß42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aß42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aß42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aß pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aß pathology in the Alzheimer's cascade.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Amiloidose/patologia , Animais , Encéfalo/patologia , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Presenilina-1/genética , Proteoma , Solubilidade
2.
Acta Neuropathol ; 136(6): 919-938, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30140941

RESUMO

The deposition of pathologic misfolded proteins in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis is hypothesized to burden protein homeostatic (proteostatic) machinery, potentially leading to insufficient capacity to maintain the proteome. This hypothesis has been supported by previous work in our laboratory, as evidenced by the perturbation of cytosolic protein solubility in response to amyloid plaques in a mouse model of Alzheimer's amyloidosis. In the current study, we demonstrate changes in proteome solubility are a common pathology to mouse models of neurodegenerative disease. Pathological accumulations of misfolded tau, α-synuclein and mutant superoxide dismutase 1 in CNS tissues of transgenic mice were associated with changes in the solubility of hundreds of CNS proteins in each model. We observed that changes in proteome solubility were progressive and, using the rTg4510 model of inducible tau pathology, demonstrated that these changes were dependent upon sustained expression of the primary pathologic protein. In all of the models examined, changes in proteome solubility were robust, easily detected, and provided a sensitive indicator of proteostatic disruption. Interestingly, a subset of the proteins that display a shift towards insolubility were common between these different models, suggesting that a specific subset of the proteome is vulnerable to proteostatic disruption. Overall, our data suggest that neurodegenerative proteinopathies modeled in mice impose a burden on the proteostatic network that diminishes the ability of neural cells to prevent aberrant conformational changes that alter the solubility of hundreds of abundant cellular proteins.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças Neurodegenerativas/patologia , Emaranhados Neurofibrilares/patologia , Proteoma/metabolismo , Fatores Etários , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças Neurodegenerativas/genética , Emaranhados Neurofibrilares/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Dobramento de Proteína , Proteoma/genética , Solubilidade , Espectrometria de Massas em Tandem , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Mol Neurodegener ; 13(1): 23, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776378

RESUMO

BACKGROUND: Prior studies in C. elegans demonstrated that the expression of aggregation-prone polyglutamine proteins in muscle wall cells compromised the folding of co-expressed temperature-sensitive proteins, prompting interest in whether the accumulation of a misfolded protein in pathologic features of human neurodegenerative disease burdens cellular proteostatic machinery in a manner that impairs the folding of other cellular proteins. METHODS: Mice expressing high levels of mutant forms of tau and α-synuclein (αSyn), which develop inclusion pathologies of the mutant protein in brain and spinal cord, were crossed to mice expressing low levels of mutant superoxide dismutase 1 fused to yellow fluorescent protein (G85R-SOD1:YFP) for aging and neuropathological evaluation. RESULTS: Mice expressing low levels of G85R-SOD1:YFP, alone, lived normal lifespans and were free of evidence of inclusion pathology, setting the stage to use this protein as a reporter of proteostatic function. We observed robust induction of G85R-SOD1:YFP inclusion pathology in the neuropil of spinal cord and brainstem of bigenic mice that co-express high levels of mutant tau in the spinal axis and develop robust spinal tau pathology (JNPL3 mice). In contrast, in crosses of the G85R-SOD1:YFP mice with mice that model spinal α-synucleinopathy (the M83 model of αSyn pathology), we observed no G85R-SOD1:YFP inclusion formation. Similarly, in crosses of the G85R-SOD1:YFP mice to mice that model cortical tau pathology (rTg4510 mice), we did not observe induction of G85R-SOD1:YFP inclusions. CONCLUSION: Despite robust burdens of neurodegenerative pathology in M83 and rTg4510 mice, the introduction of the G85R-SOD1:YFP protein was induced to aggregate only in the context of spinal tau pathology present in the JNPL3 model. These findings suggest unexpected specificity, mediated by both the primary protein pathology and cellular context, in the induced "secondary aggregation" of a mutant form of SOD1 that could be viewed as a reporter of proteostatic function.


Assuntos
Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Dobramento de Proteína , Medula Espinal/patologia , Superóxido Dismutase-1/genética
4.
J Cell Sci ; 129(9): 1892-901, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27026526

RESUMO

The capacity of the cell to produce, fold and degrade proteins relies on components of the proteostasis network. Multiple types of insults can impose a burden on this network, causing protein misfolding. Using thermal stress, a classic example of acute proteostatic stress, we demonstrate that ∼5-10% of the soluble cytosolic and nuclear proteome in human HEK293 cells is vulnerable to misfolding when proteostatic function is overwhelmed. Inhibiting new protein synthesis for 30 min prior to heat-shock dramatically reduced the amount of heat-stress induced polyubiquitylation, and reduced the misfolding of proteins identified as vulnerable to thermal stress. Following prior studies in C. elegans in which mutant huntingtin (Q103) expression was shown to cause the secondary misfolding of cytosolic proteins, we also demonstrate that mutant huntingtin causes similar 'secondary' misfolding in human cells. Similar to thermal stress, inhibiting new protein synthesis reduced the impact of mutant huntingtin on proteostatic function. These findings suggest that newly made proteins are vulnerable to misfolding when proteostasis is disrupted by insults such as thermal stress and mutant protein aggregation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Huntingtina/metabolismo , Mutação de Sentido Incorreto , Biossíntese de Proteínas , Deficiências na Proteostase/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Proteína Huntingtina/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia
5.
Neuropsychopharmacology ; 41(9): 2352-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26997298

RESUMO

The abuse of 'bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks involving frontal cortical and striatal regions could contribute to the adverse effects of MDPV.


Assuntos
Benzodioxóis/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Psicotrópicos/administração & dosagem , Pirrolidinas/administração & dosagem , Animais , Mapeamento Encefálico , Drogas Desenhadas/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Flupentixol/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos Long-Evans , Catinona Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...