Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Crit Care ; 26(1): 277, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100903

RESUMO

BACKGROUND: Recent reports of patients with severe, late-stage COVID-19 ARDS with reduced respiratory system compliance described paradoxical decreases in plateau pressure and increases in respiratory system compliance in response to anterior chest wall loading. We aimed to assess the effect of chest wall loading during supine and prone position in ill patients with COVID-19-related ARDS and to investigate the effect of a low or normal baseline respiratory system compliance on the findings. METHODS: This is a single-center, prospective, cohort study in the intensive care unit of a COVID-19 referral center. Consecutive mechanically ventilated, critically ill patients with COVID-19-related ARDS were enrolled and classified as higher (≥ 40 ml/cmH2O) or lower respiratory system compliance (< 40 ml/cmH2O). The study included four steps, each lasting 6 h: Step 1, supine position, Step 2, 10-kg continuous chest wall compression (supine + weight), Step 3, prone position, Step 4, 10-kg continuous chest wall compression (prone + weight). The mechanical properties of the respiratory system, gas exchange and alveolar dead space were measured at the end of each step. RESULTS: Totally, 40 patients were enrolled. In the whole cohort, neither oxygenation nor respiratory system compliance changed between supine and supine + weight; both increased during prone positioning and were unaffected by chest wall loading in the prone position. Alveolar dead space was unchanged during all the steps. In 16 patients with reduced compliance, PaO2/FiO2 significantly increased from supine to supine + weight and further with prone and prone + weight (107 ± 15.4 vs. 120 ± 18.5 vs. 146 ± 27.0 vs. 159 ± 30.4, respectively; p < 0.001); alveolar dead space decreased from both supine and prone position after chest wall loading, and respiratory system compliance significantly increased from supine to supine + weight and from prone to prone + weight (23.9 ± 3.5 vs. 30.9 ± 5.7 and 31.1 ± 5.7 vs. 37.8 ± 8.7 ml/cmH2O, p < 0.001). The improvement was higher the lower the baseline compliance. CONCLUSIONS: Unlike prone positioning, chest wall loading had no effects on respiratory system compliance, gas exchange or alveolar dead space in an unselected cohort of critically ill patients with C-ARDS. Only patients with a low respiratory system compliance experienced an improvement, with a higher response the lower the baseline compliance.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Parede Torácica , Estudos de Coortes , Estado Terminal/terapia , Humanos , Decúbito Ventral/fisiologia , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia
3.
Sci Total Environ ; 844: 157131, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798105

RESUMO

The growing population in cities is causing a deterioration of air quality due to the emission of pollutants, causing serious health impacts. Trees and urban forests can contribute through the interception and removal of air pollutants such as particulate matter (PM). The dry deposition of PM by vegetation depends on air pollutant concentration, meteorological conditions, and specific leaf traits. Several studies explored the ability of different plant species to accumulate PM on leaf structures leading to the development of models to quantify the PM removal. The i-Tree Eco is the most used model to evaluate ecosystem services provided by urban trees. However, fine particulate matter (PM2.5) removal is still calculated with a poorly evaluated function of deposition velocity (which depends on wind speed and leaf area) without differentiating between tree species. Therefore, we present an improvement of the standard model calculation introducing a leaf trait index to distinguish the species effect on PM net removal. We also compared model results with measurements of deposited leaf PM by vacuum filtration. The index includes the effect of morphological and functional leaf characteristics of tree species using four parameters: leaf water storage, deposition velocity, resuspension rate and leaf washing capacity. Leaves of 11 common urban tree species were sampled in representative areas of the city of Ferrara (Italy) and at different times of the year from 2018 to 2021. This includes four deciduous broadleaf trees (Tilia cordata, Platanus acerifolia, Acer platanoides, Celtis australis), three evergreen broadleaf trees (Quercus ilex, Magnolia grandiflora, Nerium oleander), and four conifers (Thuja orientalis, Cedrus libani, Pinus pinaster, Picea abies). The results provide significant advancement in assessing PM removal using decision support tools such as models to properly select tree species for future urban tree planting programs aimed at improving air quality.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Material Particulado/análise , Folhas de Planta/química , Árvores/química
4.
J Anesth Analg Crit Care ; 2(1): 20, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37386529

RESUMO

PURPOSE: Assess long-term quality of life (HR-QoL) and socio-economic impact in COVID-19-related ARDS (C-ARDS) survivors. METHODS: C-ARDS survivors were followed up at 6 months in this prospective, cohort study. HR-QoL was assessed using SF-36 and EQ-5D-5L, and the socio-economic burden of COVID-19 was evaluated with a dedicated questionnaire. Clinical data were prospectively recorded. RESULTS: Seventy-nine survivors, age 63 [57-71], 84% male, were enrolled. The frequency of EQ-5D-5L reported problems was significantly higher among survivors compared to normal, in mobility, usual activities, and self-care; anxiety and depression and pain were not different. SF-36 scores were lower than the reference population, and physical and mental summary scores were below normal in 52% and 33% of the subjects, respectively. In the multivariable analysis, prolonged hospital length of stay (OR 1.45; p 0.02) and two or more comorbidities on admission (OR 7.42; p 0.002) were significant predictors of impaired "physical" and "mental" HR-QoL, respectively. A total of 38% subjects worsened social relations, 42% changed their employment status, and 23% required personal care support. CONCLUSIONS: C-ARDS survivors have long-term impairment in HR-QoL and socio-economic problems. Prolonged hospital stay and previous comorbidities are risk factors for developing health-related issues.

5.
Minerva Anestesiol ; 88(5): 352-360, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34761663

RESUMO

BACKGROUND: The carotid artery velocity-time integral (CVTI) and the carotid Doppler peak velocity (cDPV), as well as measures of their variation induced by the respiratory cycle, have been proposed as fast and easy to obtain ultrasound measures for assessing fluid responsiveness in intensive care unit patients. To investigate this possibility, we conducted a prospective observational study in hemodynamically unstable patients under mechanical ventilation. METHODS: From May 1 to December 31, 2019, we conducted a prospective observational study involving 50 hemodynamically unstable patients under mechanical ventilation. We obtained a total of 800 Doppler ultrasound measurements from the left common carotid artery and at the level of the aortic annulus in the apical five-chamber view. The two measurements were performed before and after a 7 mL/kg fluid challenge and within the first hour of the onset of hemodynamic instability. The maximum Doppler peak velocity, the minimum Doppler peak velocity, and the maximum and minimum VTI at both the aortic and carotid level were acquired. RESULTS: Twenty-eight (56%) patients showed a ≥15% increase in AoVTI after the fluid challenge, and were therefore identified as "fluid responders". All Doppler measurements were always significantly greater (P<0.0001) in fluid responders in relation to both carotid and aortic parameters. Good agreement between the above-mentioned measurements was found: Cohen's kappa coefficient between the carotid and aortic ΔDPV was 0.76 (95% CI 0.58-0.94); and between the Carotid and Aortic ΔVTI it was 0.84 (95% CI 0.68-0.99). CONCLUSIONS: CDPV was found to predict fluid responsiveness in unstable mechanically ventilated patients.


Assuntos
Hidratação , Respiração Artificial , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Testes de Função Cardíaca , Hemodinâmica , Humanos
7.
Environ Sci Technol ; 55(10): 6613-6622, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33908766

RESUMO

Trees and urban forests remove particulate matter (PM) from the air through the deposition of particles on the leaf surface, thus helping to improve air quality and reduce respiratory problems in urban areas. Leaf deposited PM, in turn, is either resuspended back into the atmosphere, washed off during rain events or transported to the ground with litterfall. The net amount of PM removed depends on crown and leaf characteristics, air pollution concentration, and weather conditions, such as wind speed and precipitation. Many existing deposition models, such as i-Tree Eco, calculate PM2.5 removal using a uniform deposition velocity function and resuspension rate for all tree species, which vary based on leaf area and wind speed. However, model results are seldom validated with experimental data. In this study, we compared i-Tree Eco calculations of PM2.5 deposition with fluxes determined by eddy covariance assessments (canopy scale) and particulate matter accumulated on leaves derived from measurements of vacuum/filtration technique as well as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (leaf scale). These investigations were carried out at the Capodimonte Royal Forest in Naples. Modeled and measured fluxes showed good overall agreement, demonstrating that net deposition mostly happened in the first part of the day when atmospheric PM concentration is higher, followed by high resuspension rates in the second part of the day, corresponding with increased wind speeds. The sensitivity analysis of the model parameters showed that a better representation of PM deposition fluxes could be achieved with adjusted deposition velocities. It is also likely that the standard assumption of a complete removal of particulate matter, after precipitation events that exceed the water storage capacity of the canopy (Ps), should be reconsidered to better account for specific leaf traits. These results represent the first validation of i-Tree Eco PM removal with experimental data and are a starting point for improving the model parametrization and the estimate of particulate matter removed by urban trees.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Quercus , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas , Material Particulado/análise , Folhas de Planta/química , Árvores
8.
Int J Biometeorol ; 65(2): 277-289, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33070207

RESUMO

Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone). In conclusion, the presented model has demonstrated its ability to quantify two major ecosystem services (temperature mitigation and air pollution removal) consistently in dependence on meteorological and site conditions.


Assuntos
Ecossistema , Microclima , Cidades , Florestas , Alemanha , Humanos , Transpiração Vegetal , Água
9.
Front Plant Sci ; 11: 549913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117411

RESUMO

Nitrogen oxides (NOx), mainly a mixture of nitric oxide (NO) and nitrogen dioxide (NO2), are formed by the reaction of nitrogen and oxygen compounds in the air as a result of combustion processes and traffic. Both deposit into leaves via stomata, which on the one hand benefits air quality and on the other hand provides an additional source of nitrogen for plants. In this study, we first determined the NO and NO2 specific deposition velocities based on projected leaf area (sV d) using a branch enclosure system. We studied four tree species that are regarded as suitable to be planted under predicted future urban climate conditions: Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica and Ostrya carpinifolia. The NO and NO2 sVd were found similar in all tree species. Second, in order to confirm NO metabolization, we fumigated plants with 15NO and quantified the incorporation of 15N in leaf materials of these trees and four additional urban tree species (Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia henryana) under controlled environmental conditions. Based on these 15N-labeling experiments, A. glutinosa showed the most effective incorporation of 15NO. Third, we tried to elucidate the mechanism of metabolization. Therefore, we generated transgenic poplars overexpressing Arabidopsis thaliana phytoglobin 1 or 2. Phytoglobins are known to metabolize NO to nitrate in the presence of oxygen. The 15N uptake in phytoglobin-overexpressing poplars was significantly increased compared to wild-type trees, demonstrating that the NO uptake is enzymatically controlled besides stomatal dependence. In order to upscale the results and to investigate if a trade-off exists between air pollution removal and survival probability under future climate conditions, we have additionally carried out a modeling exercise of NO and NO2 deposition for the area of central Berlin. If the actually dominant deciduous tree species (Acer platanoides, Tilia cordata, Fagus sylvatica, Quercus robur) would be replaced by the species suggested for future conditions, the total annual NO and NO2 deposition in the modeled urban area would hardly change, indicating that the service of air pollution removal would not be degraded. These results may help selecting urban tree species in future greening programs.

10.
Environ Geochem Health ; 42(8): 2321-2329, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598822

RESUMO

The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.


Assuntos
Chumbo/farmacocinética , Chumbo/toxicidade , Poaceae/efeitos dos fármacos , Salix/efeitos dos fármacos , Sambucus nigra/efeitos dos fármacos , Ecossistema , Humanos , Itália , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Rizoma , Salix/metabolismo , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Especificidade da Espécie , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...