Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615816

RESUMO

During biomanufacturing, several unit operations expose solutions of biologics to multiple stresses, such as hydrodynamic shear forces due to fluid flow and interfacial dilatational stresses due to mechanical agitation or bubble collapse. When these stresses individually act on proteins adsorbed to interfaces, it results in an increase in protein particles in the bulk solution, a phenomenon referred to as interface-induced protein particle formation. However, an understanding of the dominant cause, when multiple stresses are acting simultaneously or sequentially, on interface-induced protein particle formation is limited. In this work, we established a unique set-up using a peristaltic pump and a Langmuir-Pockels trough to study the impact of hydrodynamic shear stress due to pumping and interfacial dilatational stress, on protein particle formation. Our experimental results together demonstrate that for protein solutions subjected to various combinations of stress (i.e., interfacial and hydrodynamic stress in different sequences), surface pressure values during adsorption and when subjected to compression/dilatational stresses, showed no change, suggesting that the interfacial properties of the protein film are not impacted by pumping. The concentration of protein particles is an order of magnitude higher when interfacial dilatational stress is applied at the air-liquid interface, compared to solutions that are only subjected to pumping. Furthermore, the order in which these stresses are applied, have a significant impact on the concentration of protein particles measured in the bulk solution. Together, these studies conclude that for biologics exposed to multiple stresses throughout bioprocessing and manufacturing, exposure to air-liquid interfacial dilatational stress is the predominant mechanism impacting protein particle formation at the interface and in the bulk solution.

2.
J Pharm Sci ; 111(11): 2998-3008, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940242

RESUMO

Therapeutic proteins are subjected to a variety of stresses during manufacturing, storage or administration, that often lead to undesired protein aggregation and particle formation. Ultrafiltration-diafiltration (UF-DF) processing of monoclonal antibodies (mAbs) is one such manufacturing step that has been shown to result in such physical degradation. In this work, we explore the use of different analytical techniques and lab-scale setups as methodologies to predict and rank-order the aggregation potential of four different mAbs during large-scale UF-DF processing. In the first part of the study, a suite of biophysical techniques was applied to assess differences in their inherent bulk protein properties including conformational and colloidal stability in a PBS buffer. Additionally, the inherent interfacial properties of these mAbs in PBS were measured using a Langmuir trough technique. In the next part of the study, several different scale-down lab models were evaluated including a lab bench-scale UF-DF setup, mechanical stress (shaking/stirring) studies in vials, and application of interfacial dilatational stress using a Langmuir trough to assess protein particle formation in different UF-DF processing buffers. Taken together, our results demonstrate the ability of a Langmuir-trough methodology to accurately predict the mAb instability profile observed during large scale UF-DF processing.


Assuntos
Anticorpos Monoclonais , Ultrafiltração , Agregados Proteicos , Ultrafiltração/métodos
3.
Front Pharmacol ; 13: 829063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795558

RESUMO

Pharmacokinetic/pharmacodynamic (PK/PD) modeling was performed to quantitatively integrate preclinical pharmacology and toxicology data for determining the therapeutic index (TI) of an interleukin-10 (IL-10) fragment crystallizable (Fc) fusion protein. Mouse Fc fused with mouse IL-10 (mFc-mIL-10) was studied in mice for antitumor efficacy, and the elevation of interleukin-18 (IL-18) was examined as a PD biomarker. The in vivo mFc-mIL-10 EC50 for the IL-18 induction was estimated to be 2.4 nM, similar to the in vitro receptor binding affinity (Kd) of 3.2 nM. The IL-18 induction was further evaluated in cynomolgus monkeys, where the in vivo induction EC50 by a human IL-10 human Fc-fusion protein (hFc-hIL-10) was 0.08 nM vs. 0.3 nM measured as the in vitro Kd. The extent of the IL-18 induction correlated with mouse antitumor efficacy and was used to connect mouse efficacy to that in monkeys. The PD-based efficacious dose projected in monkeys was comparable to the results obtained using a PK-based method in which mouse efficacious exposure was targeted and corrected for affinity differences between the species. Furthermore, PK/PD relationships were developed for anemia and thrombocytopenia in monkeys treated with hFc-hIL-10, with thrombocytopenia predicted to be dose-limiting toxicity. Using quantitative pharmacology and toxicology information obtained through modeling work in the same species, the TI of hFc-hIL-10 in monkeys was determined to be 2.4 (vs. PD-based efficacy) and 1.2-3 (vs. PK-based efficacy), indicating a narrow safety margin. The model-based approaches were proven valuable to the developability assessment of the IL-10 Fc-fusion protein.

4.
Drug Metab Dispos ; 50(7): 898-908, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545256

RESUMO

Fragment crystallizable (Fc) fusion is commonly used for extending the half-life of biotherapeutics such as cytokines. In this work, we studied the pharmacokinetics of Fc-fused interleukin-10 (IL-10) proteins that exhibited potent antitumor activity in mouse syngeneic tumor models. At pharmacologically active doses of ≥0.1 mg/kg, both mouse Fc-mouse IL-10 and human Fc-human IL-10, constructed as the C terminus of the Fc domain fused with IL-10 via a glycine-serine polypeptide linker, exhibited nonlinear pharmacokinetics after intravenous administration to mice at the doses of 0.05, 0.5, and 5 mg/kg. With a nominal dose ratio of 1:10:100; the ratio of the area under the curve for mouse Fc-mouse IL-10 and human Fc-human IL-10 was 1:181:1830 and 1:75:633, respectively. In contrast, recombinant mouse or human IL-10 proteins exhibited linear pharmacokinetics in mice. Compartmental analysis, using the Michaelis-Menten equation with the in vitro IL-10 receptor alpha binding affinity inputted as the Km, unified the pharmacokinetic data across the dose range. Additionally, nontarget-mediated clearance estimated for fusion proteins was ∼200-fold slower than that for cytokines, causing the manifestation of target-mediated drug disposition (TMDD) in the fusion protein pharmacokinetics. The experimental data generated with a mouse IL-10 receptor alpha-blocking antibody and a human Fc-human IL-10 mutant with a reduced receptor binding affinity showed significant improvements in pharmacokinetics, supporting TMDD as the cause of nonlinearity. Target expression and its effect on pharmacokinetics must be determined when considering using Fc as a half-life extension strategy, and pharmacokinetic evaluations need to be performed at a range of doses covering pharmacological activity. SIGNIFICANCE STATEMENT: Target-mediated drug disposition can manifest to affect the pharmacokinetics of a fragment crystallizable (Fc)-fused cytokine when the nontarget-mediated clearance of the cytokine is decreased due to neonatal Fc receptor-mediated recycling and molecular weight increases that reduce the renal clearance. The phenomenon was demonstrated with interleukin-10 Fc-fusion proteins in mice at pharmacologically active doses. Future drug designs using Fc as a half-life extension approach for cytokines need to consider target expression and its effect on pharmacokinetics at relevant doses.


Assuntos
Interleucina-10 , Animais , Meia-Vida , Humanos , Interleucina-10/farmacocinética , Camundongos , Receptores de Interleucina-10 , Proteínas Recombinantes de Fusão/farmacocinética
5.
J Pharm Sci ; 111(3): 680-689, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742729

RESUMO

Formation of submicron and subvisible protein particles (0.1-100 µm) present a major obstacle during processing and storage of therapeutic proteins. While protein aggregation resulting in particle formation is well-understood in bulk solution, the mechanisms of aggregation due to interfacial stresses is less understood. Particularly, in this study, we focus on understanding the combined effect of temperature and application of interfacial dilatational stresses, on interface-induced protein particle formation, using two industrially relevant monoclonal antibodies (mAbs). The surface activity of Molecule C (MC) and Molecule B (MB) were measured at room temperature (RT) and 4 °C in the absence and presence of interfacial dilatation stress using a Langmuir trough. These results were correlated with Micro-flow imaging (MFI) to characterize formation of subvisible protein particles at the interface and in the bulk solution. Our results show that the surface activity for both proteins is temperature dependent. However, the extent of the impact of temperature on the mechanical properties of the monomolecular protein films when subjected to dilatational stresses is protein dependent. Protein particle analysis provided evidence that protein particles formed in bulk solution originate at the interface and are dependent on both application of thermal stresses and interfacial dilatational stresses. In the absence of any interfacial stresses, more and larger protein particles were formed at the interface at RT than at 4 °C. When mAb formulations are subjected to interfacial dilatational stresses, protein particle formation in bulk solution was found to be temperature dependent. Together our results validate that mAb solutions maintained at 4 °C can lower the surface activity of proteins and reduce their tendency to form interface-induced protein particles both in the absence and presence of interfacial dilatational stresses.


Assuntos
Anticorpos Monoclonais , Proteínas de Membrana , Dilatação , Composição de Medicamentos , Temperatura
6.
J Pharm Sci ; 107(4): 1009-1019, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29269271

RESUMO

Antibodies are molecules that exhibit diverse conformational changes on different timescales, and there is ongoing interest to better understand the relationship between antibody conformational dynamics and storage stability. Physical stability data for an IgG4 monoclonal antibody (mAb-D) were gathered through traditional forced degradation (temperature and stirring stresses) and accelerated stability studies, in the presence of different additives and solution conditions, as measured by differential scanning calorimetry, size exclusion chromatography, and microflow imaging. The results were correlated with hydrogen exchange mass spectrometry (HX-MS) data gathered for mAb-D in the same formulations. Certain parameters of the HX-MS data, including hydrogen exchange in specific peptide segments in the CH2 domain, were found to correlate with stabilization and destabilization of additives on mAb-D during thermal stress. No such correlations between mAb physical stability and HX-MS readouts were observed under agitation stress. These results demonstrate that HX-MS can be set up as a streamlined methodology (using minimal material and focusing on key peptide segments at key time points) to screen excipients for their ability to physically stabilize mAbs. However, useful correlations between HX-MS and either accelerated or real-time stability studies will be dependent on a particular mAb's degradation pathway(s) and the type of stresses used.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Excipientes/química , Hidrogênio/química , Imunoglobulina G/imunologia , Estabilidade Proteica/efeitos dos fármacos , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cromatografia em Gel/métodos , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Conformação Proteica
7.
J Pharm Sci ; 107(2): 559-570, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29037466

RESUMO

An automated method using biotinylated GroEL-streptavidin biosensors with biolayer interferometry (GroEL-BLI) was evaluated to detect the formation of transiently formed, preaggregate species in various pharmaceutically relevant monoclonal antibody (mAb) samples. The relative aggregation propensity of various IgG1 and IgG4 mAbs was rank ordered using the GroEL-BLI biosensor method, and the least stable IgG4 mAb was subjected to different stresses including elevated temperatures, acidic pH, and addition of guanidine HCl. The GroEL-BLI biosensor detects mAb preaggregate formation mostly before, or sometimes concomitantly with, observing soluble aggregates and subvisible particles using size-exclusion chromatography and microflow imaging, respectively. A relatively unstable bispecific antibody (Bis-3) was shown to bind the GroEL biosensor even at low temperatures (25°C). During thermal stress (50°C, 1 h), increased Bis-3 binding to GroEL-biosensors was observed prior to aggregation by size-exclusion chromatography or microflow imaging. Transmission electron microscopy analysis of Bis-3 preaggregate GroEL complexes revealed, in some cases, potential hydrophobic interaction sites between the Fc domain of the Bis-3 and GroEL protein. The automated BLI method not only enables detection of transiently formed preaggregate species that initiate protein aggregation pathways but also permits rapid mAb formulation stability assessments at low volumes and low protein concentrations.


Assuntos
Anticorpos Monoclonais/química , Técnicas Biossensoriais/métodos , Cromatografia em Gel/métodos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Temperatura
8.
Obstet Gynecol ; 130(5): 988-993, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29016490

RESUMO

OBJECTIVE: To investigate neonatal morbidity and maternal complication rates with delivery body mass index (BMI) 60 or greater. METHODS: This retrospective, multicenter cohort study included singleton pregnancies between 23 and 42 weeks of gestation from January 2005 to April 2016. Women with BMI 60 or greater were compared with a random sample of women with BMI 30-59. The primary outcome, composite neonatal morbidity, was defined as 5-minute Apgar score less than 7, hypoglycemia, respiratory distress syndrome, sepsis, hospital stay greater than 5 days, neonatal intensive care unit admission, or neonatal death. Secondary outcomes included maternal labor and delivery characteristics and complication rates. Kruskal-Wallis tests and χ or Fisher exact tests were used to compare BMI categories. Multivariable logistic regression was used for adjusted analysis. RESULTS: The study included 338 women, with 39 in the BMI 60 or greater group. An association between obesity and neonatal morbidity was found. Increasing BMI correlated with increasing neonatal morbidity, with the highest rates among those with BMI 60 or greater (BMI 30-39 [17%], 40-49 [19%], 50-59 [22%], 60 or greater [56%]; P<.001). After adjustment for confounders, obese women with BMI less than 60 had at least a 75% reduction in odds of neonatal morbidity compared with women with BMI 60 or greater (BMI 30-39 adjusted odds ratio [OR] 0.22 [0.1-0.5], 40-49 adjusted OR 0.23 [0.1-0.6], 50-59 adjusted OR 0.25 [0.1-0.6]). Maternal complication rates including labor induction, cesarean delivery, wound complication, postpartum hemorrhage, and hospital stay greater than 5 days were also significantly increased with BMI 60 or greater. CONCLUSION: A BMI 60 or greater at the time of delivery is significantly associated with increased neonatal morbidity and increased maternal complication rates. In addition, neonatal morbidity and maternal complication rates with BMI 60 or greater were significantly higher when compared with women in any lesser obese BMI cohort between 30 and 59.


Assuntos
Índice de Massa Corporal , Parto Obstétrico/efeitos adversos , Doenças do Recém-Nascido/epidemiologia , Obesidade Mórbida/complicações , Complicações na Gravidez/epidemiologia , Adulto , Parto Obstétrico/métodos , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Tempo de Internação , Modelos Logísticos , Morbidade , Razão de Chances , Gravidez , Complicações na Gravidez/etiologia , Resultado da Gravidez , Estudos Retrospectivos
9.
J Pharm Sci ; 106(11): 3230-3241, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28668340

RESUMO

High protein concentration formulations are required for low-volume administration of therapeutic antibodies targeted for subcutaneous, self-administration by patients. Ultra-high concentrations (≥150 mg/mL) can lead to dramatically increased solution viscosities, which in turn can lead to stability, manufacturing, and delivery challenges. In this study, various categories and individual types of pharmaceutical excipients and other additives (56 in total) were screened for their viscosity reducing effects on 2 different mAbs. The physicochemical stability profile, as well as viscosity ranges, of several candidate antibody formulations, identified and designed based on the results of the excipient screening, were evaluated over a 6-month time period under accelerated and real-time storage conditions. In addition to reducing the solution viscosities to acceptable levels for parenteral administration (using currently available and acceptable delivery devices), the candidate formulations did not result in notable losses of physicochemical stability of the 2 antibodies on storage for 6 months at 25°C. The experiments described here demonstrate the feasibility of a formulation development and selection approach to identify candidate high-concentration antibody formulations with viscosities within pharmaceutically acceptable ranges that do not adversely affect their physicochemical storage stability.


Assuntos
Anticorpos Monoclonais/química , Excipientes/química , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Estabilidade Proteica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...