Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15547-15555, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585110

RESUMO

Hydrogen getters consisting of 1,4-bis[phenylethynyl] benzene (DEB) and a carbon-supported palladium catalyst (Pd/C) have been used to mitigate the accumulation of unwanted hydrogen gas in a sealed system. Here, we report the formulation of a composite resin consisting of silicone polymer plus DEB-Pd/C as an active getter material and the additive manufacturing of silicone getter composites with a high getter content (up to 50 wt %). NMR and DSC studies suggest no reaction between the silicone polymer resin and DEB even at elevated curing temperatures (75 °C). Getter composites with varying amounts of getter and filler were formulated, and their rheological properties were studied. The two composite resins with good printability parameters and different getter contents were chosen to make 3D-printed samples. The hydrogen absorption capacity of these samples was studied at a low hydrogen pressure of 750 mTorr of pure hydrogen. The getter composite with 50 wt% of getter showed normalized DEB conversion of 83%, with the hydrogen adsorption capacity of 100.2 mL of H2 per gram of polymer getter composite.

2.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960014

RESUMO

Although fumed silica/siloxane suspensions are commonly employed in additive manufacturing technology, the interplay between shelf life, storage conditions, and printability has yet to be explored. In this work, direct ink writing (DIW) was used to print unique three-dimensional structures that required suspensions to retain shape and form while being printed onto a substrate. Suspensions containing varying concentrations of hydrophobic and hydrophilic silica were formulated and evaluated over a time span of thirty days. Storage conditions included low (8%) and high (50%) relative humidity and temperatures ranging from 4 °C to 25 °C. The shelf life of the suspensions was examined by comparing the print quality of pristine and aged samples via rheology, optical microscopy, and mechanical testing. Results showed a significant decrease in printability over time for suspensions containing hydrophilic fumed silica, whereas the printability of suspensions containing hydrophobic fumed silica remained largely unchanged after storage. The findings in this work established the following recommendations for extending the shelf life and printability of suspensions commonly used in DIW technology: (1) higher fumed silica concentrations, (2) low humidity and low temperature storage environments, and (3) the use of hydrophobic fumed silica instead of hydrophilic fumed silica.

3.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679315

RESUMO

With the rapid pace of advancements in additive manufacturing and techniques such as fused filament fabrication (FFF), the feedstocks used in these techniques should advance as well. While available filaments can be used to print highly customizable parts, the creation of the end part is often the only function of a given feedstock. In this study, novel FFF filaments with inherent environmental sensing functionalities were created by melt-blending poly(lactic acid) (PLA), poly(ethylene glycol) (PEG), and pH indicator powders (bromothymol blue, phenolphthalein, and thymol blue). The new PLA-PEG-indicator filaments were universally more crystalline than the PLA-only filaments (33-41% vs. 19% crystallinity), but changes in thermal stability and mechanical characteristics depended upon the indicator used; filaments containing bromothymol blue and thymol blue were more thermally stable, had higher tensile strength, and were less ductile than PLA-only filaments, while filaments containing phenolphthalein were less thermally stable, had lower tensile strength, and were more ductile. When the indicator-filled filaments were exposed to acidic, neutral, and basic solutions, all filaments functioned as effective pH sensors, though the bromothymol blue-containing filament was only successful as a base indicator. The biodegradability of the new filaments was evaluated by characterizing filament samples after aging in soil and soil slurry mixtures; the amount of physical deterioration and changes in filament crystallinity suggested that the bromothymol blue filament degraded faster than PLA-only filaments, while the phenolphthalein and thymol blue filaments saw decreases in degradation rates.

4.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365651

RESUMO

Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins-or "inks"-available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the ability of the ink to lead to a successful print, or the "printability," must be considered. Thus, this work examined the effect of filler composition/concentration, printing parameters, and lattice structure on the printability of new polysiloxane inks incorporating high concentrations (50-70 wt%) of metallic and ceramic fillers as well as emulsions. Results suggest that strut diameter and spacing ratio have the most influence on the printability of DIW materials and that the printability of silica- and metal-filled inks is more predictable than ceramic-filled inks. Additionally, higher filler loadings and SC geometries led to stiffer printed parts than lower loadings and FCT geometries, and metal-filled inks were more thermally stable than ceramic-filled inks. The findings in this work provide important insights into the tradeoffs associated with the development of unique and/or multifunctional DIW inks, printability, and the final material's performance.

5.
San Juan; School of Medicine, Dept. of Physiology; 1971. 89 p il.
Tese | Porto Rico | ID: por-12289
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...