Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1118706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998989

RESUMO

The thiazide sensitive Na+:Cl- cotransporter (NCC) is the principal via for salt reabsorption in the apical membrane of the distal convoluted tubule (DCT) in mammals and plays a fundamental role in managing blood pressure. The cotransporter is targeted by thiazide diuretics, a highly prescribed medication that is effective in treating arterial hypertension and edema. NCC was the first member of the electroneutral cation-coupled chloride cotransporter family to be identified at a molecular level. It was cloned from the urinary bladder of the Pseudopleuronectes americanus (winter flounder) 30 years ago. The structural topology, kinetic and pharmacology properties of NCC have been extensively studied, determining that the transmembrane domain (TM) coordinates ion and thiazide binding. Functional and mutational studies have discovered residues involved in the phosphorylation and glycosylation of NCC, particularly on the N-terminal domain, as well as the extracellular loop connected to TM7-8 (EL7-8). In the last decade, single-particle cryogenic electron microscopy (cryo-EM) has permitted the visualization of structures at high atomic resolution for six members of the SLC12 family (NCC, NKCC1, KCC1-KCC4). Cryo-EM insights of NCC confirm an inverted conformation of the TM1-5 and TM6-10 regions, a characteristic also found in the amino acid-polyamine-organocation (APC) superfamily, in which TM1 and TM6 clearly coordinate ion binding. The high-resolution structure also displays two glycosylation sites (N-406 and N-426) in EL7-8 that are essential for NCC expression and function. In this review, we briefly describe the studies related to the structure-function relationship of NCC, beginning with the first biochemical/functional studies up to the recent cryo-EM structure obtained, to acquire an overall view enriched with the structural and functional aspects of the cotransporter.

2.
Am J Physiol Cell Physiol ; 323(2): C385-C399, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759442

RESUMO

The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCα is located in the kidney and eNCCß, which is present in the apical membrane of the rectum. Interestingly, the European eNCCß functions as a Na+-Cl- cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCß and jNCCß are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCß into jNCCß. Our data showed that jNCCß, similar to eNCCß, is resistant to thiazides. In addition, both NCCß proteins have high transport capacity with respect to their renal NCC orthologs and, in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G, or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCß proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl-, and site I172 is important for the function of NCCß.


Assuntos
Cloretos , Inibidores de Simportadores de Cloreto de Sódio , Animais , Cloretos/metabolismo , Enguias/metabolismo , Mamíferos/metabolismo , Cloreto de Sódio , Inibidores de Simportadores de Cloreto de Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Tiazidas/farmacologia
3.
Am J Physiol Cell Physiol ; 319(2): C371-C380, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579473

RESUMO

Cation-coupled chloride cotransporters (CCC) play a role in modulating intracellular chloride concentration ([Cl-]i) and cell volume. Cell shrinkage and cell swelling are accompanied by an increase or decrease in [Cl-]i, respectively. Cell shrinkage and a decrease in [Cl-]i increase the activity of NKCCs (Na-K-Cl cotransporters: NKCC1, NKCC2, and Na-Cl) and inhibit the activity of KCCs (K-Cl cotransporters: KCC1 to KCC4), wheras cell swelling and an increase in [Cl-]i activate KCCs and inhibit NKCCs; thus, it is unlikely that the same kinase is responsible for both effects. WNK1 and WNK4 are chloride-sensitive kinases that modulate the activity of CCC in response to changes in [Cl-]i. Here, we showed that WNK3, another member of the serine-threonine kinase WNK family with known effects on CCC, is not sensitive to [Cl-]i but can be regulated by changes in extracellular tonicity. In contrast, WNK4 is highly sensitive to [Cl-]i but is not regulated by changes in cell volume. The activity of WNK3 toward NaCl cotransporter is not affected by eliminating the chloride-binding site of WNK3, further confirming that the kinase is not sensitive to chloride. Chimeric WNK3/WNK4 proteins were produced, and analysis of the chimeras suggests that sequences within the WNK's carboxy-terminal end may modulate the chloride affinity. We propose that WNK3 is a cell volume-sensitive kinase that translates changes in cell volume into phosphorylation of CCC.


Assuntos
Tamanho Celular , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo , Proteínas de Xenopus/genética , Animais , Cloretos/química , Cloretos/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Humanos , Oócitos/química , Oócitos/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/química , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
4.
Curr Top Membr ; 81: 207-235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30243433

RESUMO

Ion Transport across the cell membrane is required to maintain cell volume homeostasis. In response to changes in extracellular osmolarity, most cells activate specific metabolic or membrane-transport pathways to respond to cell swelling or shrinkage and return their volume to its normal resting state. This process involves the rapid adjustment of the activities of channels and transporters that mediate flux of K+, Na+, Cl-, and small organic osmolytes. Cation chloride cotransporters (CCCs) NKCCs and KCCs are a family of membrane proteins modulated by changes in cell volume and/or in the intracellular chloride concentration ([Cl-]i). Cell swelling triggers regulatory volume decrease (RVD), promoting solute and water efflux to restore normal cell volume. Swelling-activated KCCs mediate RVD in most cell types. In contrast, cell shrinkage triggers regulatory volume increase (RVI), which involves the activation of the NKCC1 cotransporter of the CCC family. Regulation of the CCCs during RVI and RVD by protein phosphorylation is a well-characterized mechanism, where WNK kinases and their downstream kinase substrates, SPAK and OSR1 constitute the essential phospho-regulators. WNKs-SPAK/OSR1-CCCs complex is required to regulate cell shrinkage-induced RVI or cell swelling-induced RVD via activating or inhibitory phosphorylation of NKCCs or KCCs, respectively. WNK1 and WNK4 kinases have been established as [Cl-]i sensors/regulators, while a role for WNK3 kinase as a cell volume-sensing kinase has emerged and is proposed in this chapter.


Assuntos
Tamanho Celular , Animais , Cloretos/metabolismo , Humanos , Transporte de Íons/fisiologia , Fosforilação , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
5.
J Biol Chem ; 293(31): 12209-12221, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29921588

RESUMO

WNK lysine-deficient protein kinase 4 (WNK4) is an important regulator of renal salt handling. Mutations in its gene cause pseudohypoaldosteronism type II, mainly arising from overactivation of the renal Na+/Cl- cotransporter (NCC). In addition to full-length WNK4, we have observed faster migrating bands (between 95 and 130 kDa) in Western blots of kidney lysates. Therefore, we hypothesized that these could correspond to uncharacterized WNK4 variants. Here, using several WNK4 antibodies and WNK4-/- mice as controls, we showed that these bands indeed correspond to short WNK4 variants that are not observed in other tissue lysates. LC-MS/MS confirmed these bands as WNK4 variants that lack C-terminal segments. In HEK293 cells, truncation of WNK4's C terminus at several positions increased its kinase activity toward Ste20-related proline/alanine-rich kinase (SPAK), unless the truncated segment included the SPAK-binding site. Of note, this gain-of-function effect was due to the loss of a protein phosphatase 1 (PP1)-binding site in WNK4. Cotransfection with PP1 resulted in WNK4 dephosphorylation, an activity that was abrogated in the PP1-binding site WNK4 mutant. The electrophoretic mobility of the in vivo short variants of renal WNK4 suggested that they lack the SPAK-binding site and thus may not behave as constitutively active kinases toward SPAK. Finally, we show that at least one of the WNK4 short variants may be produced by proteolysis involving a Zn2+-dependent metalloprotease, as recombinant full-length WNK4 was cleaved when incubated with kidney lysate.


Assuntos
Rim/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Rim/química , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Deleção de Sequência
6.
J Biol Chem ; 291(43): 22472-22481, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27587391

RESUMO

The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCß is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCß from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCß is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCß is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCß exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Enguias/metabolismo , Proteínas de Peixes/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/metabolismo , Animais , Enguias/genética , Proteínas de Peixes/genética , Humanos , Oócitos , Ratos , Simportadores de Cloreto de Sódio/genética , Xenopus laevis
7.
Hypertension ; 64(5): 1047-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25113964

RESUMO

The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine-rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice (WNK1(+/FHHt)) with WNK4(-/-) mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1(+/FHHt) mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine-rich kinase-dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio/fisiologia , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Antígenos de Histocompatibilidade Menor , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Proteína Quinase 1 Deficiente de Lisina WNK
8.
Rev Invest Clin ; 66(6): 559-67, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25729873

RESUMO

NCC cotransporter is the mayor pathway for sodium chloride reabsorption in the distal nephron and the target of thiazide diuretics which, given their clinical utility in the management of arterial hypertension, are amongst the top sold drugs in the world. NCC protein is of great physiological importance given its role in the maintenance of water and salt homeostasis on the organism. Inactivating mutations in the gene that codes for NCC cause Gitelman's syndrome: an autosomal recessive disease associated with arterial hypotension, metabolic alkalosis, hipokalemia and hypocalciuria. This syndrome represents strong evidence of the relevance of the role of NCC in blood pressure regulation, electrolyte and acid base balance. In this work we review the up to date knowledge regarding this cotransporter with special attention to the molecular aspects of the protein that determine is physiological function and pathological roles.


Assuntos
Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Tiazidas/farmacologia , Pressão Sanguínea/fisiologia , Diuréticos/farmacologia , Síndrome de Gitelman/fisiopatologia , Humanos , Simportadores de Cloreto de Sódio/química
9.
Cell Physiol Biochem ; 29(1-2): 291-302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22415098

RESUMO

The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Mutação , Oócitos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
10.
Cell Physiol Biochem ; 28(6): 1123-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179001

RESUMO

The with-no-lysine kinase 3 (WNK3) is a serine/threonine kinase that modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC). Using the Xenopus laevis oocyte heterologous expression system, it has been shown that WNK3 activates the Na(+)-coupled chloride cotransporters NKCC1, NKCC2, and NCC and inhibits the K(+)-coupled chloride cotransporters KCC1 through KCC4. Interestingly, the effect of catalytically inactive WNK3 is opposite to that of wild type WNK3: inactive WNK3 inhibits NKCCs and activates KCCs. In doing so, wild type and catalytically inactive WNK3 bypass the tonicity requirement for activation/inhibition of the cotransporter. Thus, WNK3 modulation of the electroneutral cotransporters promotes Cl(-) influx and prevents Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". Other kinases that potentially have these properties are the Ste20-type kinases, SPAK/OSR1, which become phosphorylated in response to reductions in intracellular chloride concentration and regulate the activity of NKCC1. It has been demonstrated that WNKs lie upstream of SPAK/OSR1 and that the activity of these kinases is activated by phosphorylation of threonines in the T-loop by WNKs. It is possible that a protein phosphatase is also involved in the WNK3 effects on its associated cotransporters because activation of KCCs and inhibition of NKCCs by inactive WNK3 can be prevented by known inhibitors of protein phosphatases, such as calyculin A and cyclosporine, suggesting that a protein phosphatase is also involved in the protein complex.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Animais , Tamanho Celular , Cloretos/metabolismo , Humanos , Modelos Moleculares , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo
11.
Biochim Biophys Acta ; 1808(7): 1888-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440528

RESUMO

Several proteins that interact with cholesterol have a highly conserved sequence, corresponding to the cholesterol recognition/interaction amino acid consensus. Since cholesterol has been proposed to modulate both oligomerization and insertion of the pro-apoptotic protein BAX, we investigated the existence of such a motif in the BAX sequence. Residues 113 to 119 of the recombinant BAX α5-helix, LFYFASK, correspond with the sequence motif described for the consensus pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K. Functional characterization of the point mutations, K119A, Y115F, and L113A in BAX, was performed in liposomes supplemented with cholesterol, comparing binding, integration, and pore forming activities. Our results show that the mutations Y115F and L113A changed the cholesterol-dependent insertion observed in the wild type protein. In addition, substitutions in the BAX sequence modified the concentration dependency of carboxyfluorescein release in liposomes, although neither pore activity of the wild type or of any of the mutants significantly increased in cholesterol-enriched liposomes. Thus, while it is likely that the putative CRAC motif in BAX accounts for its enhanced insertion in cholesterol-enriched liposomes; the pore forming properties of BAX did not depend on cholesterol content in the membranes, albeit those mutations changed the pore channeling activity of the protein.


Assuntos
Motivos de Aminoácidos , Lipossomos , Proteína X Associada a bcl-2/química , Sequência de Aminoácidos , Biopolímeros/química , Colesterol/química , Fluoresceínas/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/isolamento & purificação
12.
J Hypertens ; 29(3): 475-83, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21157372

RESUMO

OBJECTIVES: Screening for variants in SLC12A1 and SLC12A3 genes, encoding the renal Na:Cl (NCC) and Na:K:2Cl (NKCC2) cotransporters, respectively, in 3125 members of the Framingham Heart Study (FHS) revealed that carrying a rare mutation in one of these genes was associated with a significant reduction in blood pressure, in the risk of arterial hypertension, and of death due to cardiovascular disease. Because near 60% of the rare mutations identified have not been related to Bartter's or Gitelman's disease, the consequence of such mutations on cotransporter activity is unknown. METHODS: We used the heterologous expression system of Xenopus laevis oocytes, microinjected with wild-type or mutant NCC or NKCC2 cRNAs, to examine the effect of these inferred NCC and NKCC2 mutations on the cotransporters' functional properties. Cotransporter activity was defined as the diuretic-sensitive radioactive tracer uptake and response to known modulators was assessed. RESULTS: Basal NCC activity was significantly reduced in all NCC mutants and, excluding NCC-S186F, response to WNK3, WNK4, or intracellular chloride depletion was conserved. Similarly, basal activity was reduced in six out of nine NKCC2 mutants and response to WNK3 was maintained. No effect on protein expression was seen, except for NCC-S186F, which was significantly reduced. CONCLUSIONS: The rare NCC or NKCC2 mutations found in the FHS significantly reduced the basal activity of the cotransporters. This observation supports that even a small, but chronic reduction of NCC or NKCC2 function results in a lower blood pressure and decreased risk of hypertension in otherwise healthy individuals in the general population.


Assuntos
Hipertensão/prevenção & controle , Mutação , Receptores de Droga/fisiologia , Simportadores de Cloreto de Sódio-Potássio/fisiologia , Simportadores/fisiologia , Animais , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Receptores de Droga/genética , Simportadores de Cloreto de Sódio-Potássio/análise , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/genética , Xenopus laevis
13.
Am J Physiol Renal Physiol ; 299(5): F1111-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719978

RESUMO

Little is known about the residues that control the binding and affinity of thiazide-type diuretics for their protein target, the renal Na(+)-Cl(-) cotransporter (NCC). Previous studies from our group have shown that affinity for thiazides is higher in rat (rNCC) than in flounder (flNCC) and that the transmembrane region (TM) 8-12 contains the residues that produce this difference. Here, an alignment analysis of TM 8-12 revealed that there are only six nonconservative variations between flNCC and mammalian NCC. Two are located in TM9, three in TM11, and one in TM12. We used site-directed mutagenesis to generate rNCC containing flNCC residues, and thiazide affinity was assessed using Xenopus laevis oocytes. Wild-type or mutant NCC activity was measured using (22)Na(+) uptake in the presence of increasing concentrations of metolazone. Mutations in TM11 conferred rNCC an flNCC-like affinity, which was caused mostly by the substitution of a single residue, S575C. Supporting this observation, the substitution C576S conferred to flNCC an rNCC-like affinity. Interestingly, the S575C mutation also rendered rNCC more active. Substitution of S575 in rNCC for other residues, such as alanine, aspartate, and lysine, did not alter metolazone affinity, suggesting that reduced affinity in flNCC is due specifically to the presence of a cysteine. We conclude that the difference in metolazone affinity between rat and flounder NCC is caused mainly by a single residue and that this position in the protein is important for determining its functional properties.


Assuntos
Diuréticos/metabolismo , Linguado/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Tiazidas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Western Blotting , Humanos , Metolazona/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/fisiologia , Oócitos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Coelhos , Ratos , Simportadores de Cloreto de Sódio/química , Especificidade da Espécie , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 106(11): 4384-9, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19240212

RESUMO

Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and high serum K(+) levels (hyperkalemia). WNK4 has distinct functional states that regulate the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter NCC and the K(+) channel ROMK. WNK4's functions could enable differential responses to intravascular volume depletion (hypovolemia) and hyperkalemia. Because hypovolemia is uniquely associated with high angiotensin II (AngII) levels, AngII signaling might modulate WNK4 activity. We show that AngII signaling in Xenopus oocytes increases NCC activity by abrogating WNK4's inhibition of NCC but does not alter WNK4's inhibition of ROMK. This effect requires AngII, its receptor AT1R, and WNK4, and is prevented by the AT1R inhibitor losartan. NCC activity is also increased by WNK4 harboring mutations found in PHAII, and this activity cannot be further augmented by AngII signaling, consistent with PHAII mutations providing constitutive activation of the signaling pathway between AT1R and NCC. AngII's effect on NCC is also dependent on the kinase SPAK because dominant-negative SPAK or elimination of the SPAK binding motif in NCC prevent activation of NCC by AngII signaling. These effects extend to mammalian cells. AngII increases phosphorylation of specific sites on SPAK and NCC that are necessary for activation of each in mpkDCT cells. These findings place WNK4 in the signaling pathway between AngII and NCC, and provide a mechanism by which hypovolemia maximizes renal salt reabsoprtion without concomitantly increasing K(+) secretion.


Assuntos
Angiotensina II/metabolismo , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Simportadores de Cloreto de Sódio/metabolismo , Animais , Hiperpotassemia , Hipertensão , Hipovolemia , Camundongos , Oócitos , Fosforilação , Transfecção , Xenopus
15.
Proc Natl Acad Sci U S A ; 105(24): 8458-63, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550832

RESUMO

The Na(+):K(+):2Cl(-) cotransporter (NKCC2) is the target of loop diuretics and is mutated in Bartter's syndrome, a heterogeneous autosomal recessive disease that impairs salt reabsorption in the kidney's thick ascending limb (TAL). Despite the importance of this cation/chloride cotransporter (CCC), the mechanisms that underlie its regulation are largely unknown. Here, we show that intracellular chloride depletion in Xenopus laevis oocytes, achieved by either coexpression of the K-Cl cotransporter KCC2 or low-chloride hypotonic stress, activates NKCC2 by promoting the phosphorylation of three highly conserved threonines (96, 101, and 111) in the amino terminus. Elimination of these residues renders NKCC2 unresponsive to reductions of [Cl(-)](i). The chloride-sensitive activation of NKCC2 requires the interaction of two serine-threonine kinases, WNK3 (related to WNK1 and WNK4, genes mutated in a Mendelian form of hypertension) and SPAK (a Ste20-type kinase known to interact with and phosphorylate other CCCs). WNK3 is positioned upstream of SPAK and appears to be the chloride-sensitive kinase. Elimination of WNK3's unique SPAK-binding motif prevents its activation of NKCC2, as does the mutation of threonines 96, 101, and 111. A catalytically inactive WNK3 mutant also completely prevents NKCC2 activation by intracellular chloride depletion. Together these data reveal a chloride-sensing mechanism that regulates NKCC2 and provide insight into how increases in the level of intracellular chloride in TAL cells, as seen in certain pathological states, could drastically impair renal salt reabsorption.


Assuntos
Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Humanos , Camundongos , Mutação , Oócitos , Fosforilação , Ratos , Simportadores de Cloreto de Sódio-Potássio/química , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Treonina/química , Treonina/genética , Treonina/metabolismo , Xenopus
16.
Am J Physiol Renal Physiol ; 292(4): F1197-207, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17182532

RESUMO

WNK kinases [with no lysine (K) kinase] are emerging as regulators of several membrane transport proteins in which WNKs act as molecular switches that coordinate the activity of several players. Members of the cation-coupled chloride cotransporters family (solute carrier family number 12) are one of the main targets. WNK3 activates the Na(+)-driven cotransporters NCC, NKCC1, and NKCC2 and inhibits the K(+)-driven cotransporters KCC1 to KCC4. WNK4 inhibits the activity of NCC and NKCC1, while in the presence of the STE20-related proline-alanine-rich kinase SPAK activates NKCC1. Nothing is known, however, regarding the effect of WNK4 on the K(+)-Cl(-) cotransporters. Using the heterologous expression system of Xenopus laevis oocytes, here we show that WNK4 inhibits the activity of the K(+)-Cl(-) cotransporters KCC1, KCC3, and KCC4 under cell swelling, a condition in which these cotransporters are maximally active. The effect of WNK4 requires its catalytic activity because it was lost by the substitution of aspartate 318 for alanine (WNK4-D318A) that renders WNK4 catalytically inactive. In contrast, three different WNK4 missense mutations that cause pseudohypoaldosteronism type II do not affect the WNK4-induced inhibition of KCC4. Finally, we observed that catalytically inactive WNK4-D318A is able to bypass the tonicity requirements for KCC2 and KCC3 activation in isotonic conditions. This effect is enhanced by the presence of catalytically inactive SPAK, was prevented by the presence of protein phosphatase inhibitors, and was not present in KCC1 and KCC4. Our results reveal that WNK4 regulates the activity of the K(+)-Cl(-) cotransporters expressed in the kidney.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Simportadores/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Western Blotting , Ciclosporina/farmacologia , Feminino , Toxinas Marinhas , Mutação de Sentido Incorreto , Oócitos/metabolismo , Oxazóis/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Simportadores/antagonistas & inibidores , Proteínas de Xenopus/genética , Xenopus laevis , Cotransportadores de K e Cl-
17.
J Biol Chem ; 281(39): 28755-63, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16887815

RESUMO

The renal Na(+):Cl(-) cotransporter rNCC is mutated in human disease, is the therapeutic target of thiazide-type diuretics, and is clearly involved in arterial blood pressure regulation. rNCC belongs to an electroneutral cation-coupled chloride cotransporter family (SLC12A) that has two major branches with inverse physiological functions and regulation: sodium-driven cotransporters (NCC and NKCC1/2) that mediate cellular Cl(-) influx are activated by phosphorylation, whereas potassium-driven cotransporters (KCCs) that mediate cellular Cl(-) efflux are activated by dephosphorylation. A cluster of three threonine residues at the amino-terminal domain has been implicated in the regulation of NKCC1/2 by intracellular chloride, cell volume, vasopressin, and WNK/STE-20 kinases. Nothing is known, however, about rNCC regulatory mechanisms. By using rNCC heterologous expression in Xenopus laevis oocytes, here we show that two independent intracellular chloride-depleting strategies increased rNCC activity by 3-fold. The effect of both strategies was synergistic and dose-dependent. Confocal microscopy of enhanced green fluorescent protein-tagged rNCC showed no changes in rNCC cell surface expression, whereas immunoblot analysis, using the R5-anti-NKCC1-phosphoantibody, revealed increased phosphorylation of rNCC amino-terminal domain threonine residues Thr(53) and Thr(58). Elimination of these threonines together with serine residue Ser(71) completely prevented rNCC response to intracellular chloride depletion. We conclude that rNCC is activated by a mechanism that involves amino-terminal domain phosphorylation.


Assuntos
Cloretos/metabolismo , Regulação da Expressão Gênica , Simportadores de Cloreto de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Cloretos/química , Humanos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Treonina/química , Treonina/metabolismo , Xenopus laevis
18.
Mol Genet Metab ; 85(4): 301-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15905112

RESUMO

In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The enzyme holocarboxylase synthetase (HCS) transforms biotin into its active form 5'-biotinyl-AMP and this compound is used to biotinylate five biotin-dependent carboxylases or to activate a soluble guanylate cyclase (sGC) and a cGMP-dependent protein kinase (PKG). The HCS-sGC-PKG pathway is responsible for maintaining the mRNA levels of enzymes involved in biotin utilization including HCS, carboxylases, and a biotin carrier known as sodium-dependent multivitamin transporter (SMVT). To understand the role of SMVT in the control of biotin utilization, we have studied the effect of biotin availability on SMVT protein and mRNA expression levels in HepG2 cells by Western blot analysis and rtPCR, respectively; and their functional impact on the rate of [3H]biotin uptake in human cells. Our results showed that human HepG2 cells grown in a biotin-deficient medium have a lower rate of biotin uptake than normal cells. The impairment in biotin uptake is associated with a reduction in the amount of both SMVT protein mass and mRNA levels. Transfection of HepG2 cells with a vector containing a luciferase reporter gene under the control of the rat SMVT promoter demonstrated that its transcriptional activity is regulated by biotin availability through activation of the HCS-sGC-PKG pathway. Our results support the proposed role of SMVT in the altruistic regulation of biotin utilization in liver cells that has been associated with sparing biotin depletion of the brain.


Assuntos
Biotina/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fígado/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Ativação Transcricional , Animais , Biotina/deficiência , Biotina/genética , Biotinilação , Western Blotting , Técnicas de Cultura de Células , Proteínas Quinases Dependentes de GMP Cíclico/genética , Transportador de Glucose Tipo 1 , Humanos , Proteínas de Membrana Transportadoras , Proteínas de Transporte de Monossacarídeos/genética , RNA Mensageiro , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/genética
19.
J Biol Chem ; 279(50): 52312-8, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15456772

RESUMO

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of five carboxylases in human cells, and mutations of HCS cause multiple carboxylase deficiency (MCD). Although HCS also participates in the regulation of its own mRNA levels, the relevance of this mechanism to normal metabolism or to the MCD phenotype is not known. In this study, we show that mRNA levels of enzymes involved in biotin utilization, including HCS, are down-regulated during biotin deficiency in liver while remaining constitutively expressed in brain. We propose that this mechanism of regulation is aimed at sparing the essential function of biotin in the brain at the expense of organs such as liver and kidney during biotin deprivation. In MCD, it is possible that some of the manifestations of the disease may be associated with down-regulation of biotin utilization in liver because of the impaired activity of HCS and that high dose biotin therapy may in part be important to overcoming the adverse regulatory impact in such organs.


Assuntos
Biotina/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo , Deficiência Múltipla de Carboxilase/genética , Deficiência Múltipla de Carboxilase/metabolismo , Animais , Sequência de Bases , Biotina/deficiência , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular , DNA Complementar/genética , Deficiência de Holocarboxilase Sintetase/genética , Deficiência de Holocarboxilase Sintetase/metabolismo , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual
20.
Arch Med Res ; 33(5): 439-47, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12459313

RESUMO

Biotin, a water-soluble vitamin, is used as cofactor of enzymes involved in carboxylation reactions. In humans, there are five biotin-dependent carboxylases: propionyl-CoA carboxylase; methylcrotonyl-CoA carboxylase; pyruvate carboxylase, and two forms of acetyl-CoA carboxylase. These enzymes catalyze key reactions in gluconeogenesis, fatty acid metabolism, and amino acid catabolism; thus, biotin plays an essential role in maintaining metabolic homeostasis. In recent years, biotin has been associated with several diseases in humans. Some are related to enzyme deficiencies involved in biotin metabolism. However, not all biotin-responsive disorders can be explained based on the classical role of the vitamin in cell metabolism. Several groups have suggested that biotin may be involved in regulating transcription or protein expression of different proteins. Biotinylation of histones and triggering of transduction signaling cascades have been suggested as underlying mechanisms behind these non-classical biotin-deficiency manifestation in humans.


Assuntos
Biotina/metabolismo , Biotina/fisiologia , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/metabolismo , Catálise , Feminino , Regulação Enzimológica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Deficiência Múltipla de Carboxilase/genética , Gravidez , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...