Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623073

RESUMO

Inorganic arsenic in drinking water from groundwater sources is one of the potential causes of arsenic-contaminated environments, and it is highly toxic to human health even at low concentrations. The purpose of this study was to develop a magnetic adsorbent capable of removing arsenic from water. Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels are a type of porous material that forms when resorcinol and formaldehyde (RF) react to form a polymer network, which is then cross-linked with magnetite. Sonication-assisted direct and indirect methods were investigated for loading Fe3O4 and achieving optimal mixing and dispersion of Fe3O4 in the RF solution. Variations of the molar ratios of the catalyst (R/C = 50, 100, 150, and 200), water (R/W = 0.04 and 0.05), and Fe3O4 (M/R = 0.01, 0.03, 0.05, 0.1, 0.15, and 0.2), and thermal treatment were applied to evaluate their textural properties and adsorption capacities. Magnetic carbon xerogel monoliths (MXRF600) using indirect sonication were pyrolyzed at 600 °C for 6 h with a nitrogen gas flow in the tube furnace. Nanoporous carbon xerogels with a high surface area (292 m2/g) and magnetic properties were obtained. The maximum monolayer adsorption capacity of As(III) and As(V) was 694.3 µg/g and 1720.3 µg/g, respectively. The incorporation of magnetite in the xerogel structure was physical, without participation in the polycondensation reaction, as confirmed by XRD, FTIR, and SEM analysis. Therefore, Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels were developed as a potential adsorbent for the effective removal of arsenic with low and high ranges of As(III) and As(V) concentrations from groundwater.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231907

RESUMO

Most commercially available polymers are synthesized from compounds derived from petroleum, a finite resource. Because of this, there is a growing interest in the synthesis of new polymeric materials using renewable monomers. Following this concept, this work reports on the use of muconic acid as a renewable source for the development of new polyamides that can be used as proton-exchange membranes. Muconic acid was used as a comonomer in polycondensation reactions with 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline, 2,5-diaminobencensulfonic acid, and 4,4'-diamino-2,2'-stilbenedisulfonic acid as comonomers in the synthesis of two new series of partially renewable aromatic-aliphatic polyamides, in which the degree of sulfonation was varied. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F-NMR) techniques were used to confirm the chemical structures of the new polyamides. It was also observed that the degree of sulfonation was proportional to the molar ratio of the diamines in the feed. Subsequently, membranes were prepared by casting, and a complete characterization was conducted to determine their decomposition temperature (Td), glass transition temperature (Tg), density (ρ), and other physical properties. In addition, water uptake (Wu), ion-exchange capacity (IEC), and proton conductivity (σp) were determined for these membranes. Electrochemical impedance spectroscopy (EIS) was used to determine the conductivity of the membranes. MUFASA34 exhibited a σp value equal to 9.89 mS·cm-1, being the highest conductivity of all the membranes synthesized in this study.

3.
Polymers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396908

RESUMO

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4'-diamino-2,2'-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm-1 at 30 °C after activation of the polymer membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...