Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(13): 5475-5486, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38888590

RESUMO

Chirality-induced spin selectivity (CISS), which was demonstrated in several molecular and material systems, has drawn much interest recently. The phenomenon, described in electron transport by the difference in the transport rate of electrons of opposite spins through a chiral system, is however not fully understood. Herein, we employed density functional theory in conjunction with spin-orbit coupling to evaluate the percent spin-polarization in a device setup with finite electrodes at zero bias, using an electron transport program developed in-house. To study the interface effects and the level of theory considered, we investigated a helical oligopeptide chain, an intrinsically chiral gold cluster, and a helicene model system that was previously studied (Zöllner et al. J. Chem. Theory Comput. 2020, 16, 7357-7371). We find that the magnitude of the spin-polarization depends on the chiral system-electrode interface that is modeled by varying the interface boundary between the system's regions, on the method of calculating spin-orbit coupling, and on the exchange-correlation functional, e.g., the amount of exact exchange in the hybrid functionals. In addition, to assess the effects of bias, we employ the nonequilibrium Green's function formalism in the Quantum Atomistix Toolkit program, showing that the spin-flip terms could be important in calculating the CISS effect. Although understanding CISS in comparison to experiment is still not resolved, our study provides intrinsic responses from first-principles calculations.

2.
Inorg Chem ; 63(4): 2174-2184, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235735

RESUMO

Recently, all-inorganic copper(I) metal halides have emerged as promising optical materials due to their high light emission efficiencies. This work details the crystal structure of the two hybrid organic-inorganic metal halides [(CH3)3SO]M2I3 (M = Cu and Ag) and their alloyed derivatives [(CH3)3SO]Cu2-xAgxI3 (x = 0.2; 1.25), which were obtained by incorporating trimethylsulfoxonium organic cation (CH3)3SO+ in place of Cs+ in the yellow-emitting all-inorganic CsCu2I3. These compounds are isostructural and centrosymmetric with the space group Pnma, featuring one-dimensional edge-sharing [M2I3]- anionic double chains separated by rows of (CH3)3SO+ cations. Based on density functional theory calculations, the highest occupied molecular orbitals (HOMOs) of [(CH3)3SO]M2I3 (M = Cu and Ag) are dominated by the Cu or Ag d and I p orbitals, while the lowest unoccupied molecular orbitals (LUMOs) are Cu or Ag s and I p orbitals. [(CH3)3SO]Cu2I3 single crystals exhibit a semiconductor resistivity of 9.94 × 109 Ω·cm. Furthermore, a prototype [(CH3)3SO]Cu2I3 single-crystal-based X-ray detector with a detection sensitivity of 200.54 uCGy-1 cm-2 (at electrical field E = 41.67 V/mm) was fabricated, indicating the potential use of [(CH3)3SO]Cu2I3 for radiation detection applications.

3.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38084812

RESUMO

Two-dimensional ferroic materials exhibit a variety of functional properties that can be tuned by temperature and pressure. CuInP2S6 is a layered material that is ferrielectric at room temperature and whose properties are a result of the unique structural arrangement of ordered Cu+ and In3+ cations within a (P2S6)4- anion backbone. Here, we investigate the effect of hydrostatic pressure on the structure of CuInP2S6 single crystals through a detailed Raman spectroscopy study. Analysis of the peak frequencies, intensities, and widths reveals four high pressure regimes. At 5 GPa, the material undergoes a monoclinic-trigonal phase transition. At higher pressures (5-12 GPa), we see Raman peak sharpening, indicative of a change in the electronic structure, followed by an incommensurate phase between 12 and 17 GPa. Above 17 GPa, we see evidence for bandgap reduction in material. The original state of the material is fully recovered upon decompression, showing that hydrostatic pressure could be used to tune the electronic and ferrielectric properties of CuInP2S6.

4.
Eur Biophys J ; 52(1-2): 27-37, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36792823

RESUMO

Although the magnetosensitivity to weak magnetic fields, such as the geomagnetic field, which was exhibited by radical pairs that are potentially responsible for avian navigation, has been previously investigated by spin dynamics simulations, understanding this behavior for proposed radical pairs in other species is limited. These include, for example, radical pairs formed in the single-cell green alga Chlamydomonas reinhardtii (CraCRY) and in Columba livia (ClCRY4). In addition, the radical pair of FADH• with the one-electron reduced cyclobutane thymine dimer that was shown to be sensitive to weak magnetic fields has been of interest. In this work, we investigated the directional magnetosensitivity of these radical pairs to a weak magnetic field by spin dynamics simulations. We find significant reduction in the magnetosensitivity by inclusion of dipolar and exchange interactions, which can be mitigated by a scavenging radical, as demonstrated for the [FAD•- TyrD•] radical pair in CraCRY, but not for the [FADH• T□T•-] radical pair because of the large exchange coupling. The directional magnetosensitivity of the ClCRY4 [FAD•- TyrE•] radical pair can survive this adverse effect even without the scavenging reaction, possibly motivating further experimental exploration.


Assuntos
Columbidae , Criptocromos , Animais , Campos Magnéticos
5.
J Comput Chem ; 44(10): 1064-1072, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36597937

RESUMO

Although cyclic voltammetry (CV) measurements in solution have been widely used to determine the highest occupied molecular orbital energy (EHOMO ) of semiconducting organic molecules, an understanding of the experimentally observed discrepancies due to the solvent used is lacking. To explain these differences, we investigate the solvent effects on EHOMO by combining density functional theory and molecular dynamics calculations for four donor molecules with a common backbone moiety. We compare the experimental EHOMO values to the calculated values obtained from either implicit or first solvation shell theories. We find that the first solvation shell method can capture the EHOMO variation arising from the functional groups in solution, unlike the implicit method. We further applied the first solvation shell method to other semiconducting organic molecules measured in solutions for different solvents. We find that the EHOMO obtained using an implicit method is insensitive to solvent choice. The first solvation shell, however, produces EHOMO values that are sensitive to solvent choices and agrees with published experimental results. The solvent sensitivity arises from a hierarchy of three effects: (1) the solute electronic state within a surrounding dielectric continuum, (2) ambient temperature or solvent atoms changing the solute geometry, and (3) electronic interactions between the solute and solvents. The implicit method, on the other hand, only captures the effect of a dielectric environment. Our findings suggest that EHOMO obtained by CV measurements should account for the influence of solvent when the results are reported, interpreted, or compared to other molecules.

6.
ACS Nano ; 17(3): 2958-2967, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689725

RESUMO

Layered Transition Metal Dichalcogenides (TMDs) are an important class of materials that exhibit a wide variety of optoelectronic properties. The ability to spatially tailor their expansive property-space (e.g., conduction behavior, optical emission, surface interactions) is of special interest for applications including, but not limited to, sensing, bioelectronics, and spintronics/valleytronics. Current methods of property modulation focus on the modification of the basal surfaces and edge sites of the TMDs by the introduction of defects, functionalization with organic or inorganic moieties, alloying, heterostructure formation, and phase engineering. A majority of these methods lack the resolution for the development of next-generation nanoscale devices or are limited in the types of functionalities useful for efficient TMD property modification. In this study, we utilize electron-beam patterning on monolayer TMDs (MoSe2, WSe2 and MoS2) in the presence of a pressure-controlled atmosphere of water vapor within an environmental scanning electron microscope (ESEM). A series of parametric studies show local optical and electronic property modification depending on acceleration voltage, beam current, pressure, and electron dose. The ultimate pattern resolution achieved is 67 ± 9 nm. Raman and photoluminescence spectroscopies coupled with Kelvin Probe Force Microscopy reveal electron dose-dependent p-doping in the patterned regions, which we attribute to functionalization from the products of water vapor radiolysis (oxygen and hydroxyl groups). The modulation of the work function through patterning matches well with Density Functional Theory modeling. Finally, post-functionalization of the patterned areas with an organic fluorophore demonstrates a robust method to achieve nanoscale functionalization with high fidelity.

7.
NPJ 2D Mater Appl ; 7(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665486

RESUMO

The development of high-precision large-area optical coatings and devices comprising low-dimensional materials hinges on scalable solution-based manufacturability with control over exfoliation procedure-dependent effects. As such, it is critical to understand the influence of technique-induced transition metal dichalcogenide (TMDC) optical properties that impact the design, performance, and integration of advanced optical coatings and devices. Here, we examine the optical properties of semiconducting MoS2 films from the exfoliation formulations of four prominent approaches: solvent-mediated exfoliation, chemical exfoliation with phase reconversion, redox exfoliation, and native redox exfoliation. The resulting MoS2 films exhibit distinct refractive indices (n), extinction coefficients (k), dielectric functions (ε1 and ε2), and absorption coefficients (α). For example, a large index contrast of Δn ≈ 2.3 is observed. These exfoliation procedures and related chemistries produce different exfoliated flake dimensions, chemical impurities, carrier doping, and lattice strain that influence the resulting optical properties. First-principles calculations further confirm the impact of lattice defects and doping characteristics on MoS2 optical properties. Overall, incomplete phase reconfiguration (from 1T to mixed crystalline 2H and amorphous phases), lattice vacancies, intraflake strain, and Mo oxidation largely contribute to the observed differences in the reported MoS2 optical properties. These findings highlight the need for controlled technique-induced effects as well as the opportunity for continued development of, and improvement to, liquid phase exfoliation methodologies. Such chemical and processing-induced effects present compelling routes to engineer exfoliated TMDC optical properties toward the development of next-generation high-performance mirrors, narrow bandpass filters, and wavelength-tailored absorbers.

8.
J Phys Chem A ; 126(47): 8818-8825, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383147

RESUMO

Although colloidal cadmium chalcogenide 2D nanoplatelets (NPLs) have recently demonstrated strongly enhanced one- and two-photon absorption (OPA, TPA) spectra, an understanding of the effects of quantum confinement in the lateral and vertical (thickness) dimensions is mostly lacking. In this work, we investigate theoretically CdS and CdSe NPLs passivated with formate and acetate ligands with thicknesses of two and three monolayers (MLs) and different lateral dimensions. Initial structures for CdS nanoplatelets were obtained using our recently developed deep neural network potential, and the low-energy geometries were subsequently optimized using density functional theory (DFT). Linear- and nonlinear-response calculations using time-dependent DFT (TDDFT) and the simplified Tamm-Dancoff approximation (sTDA) demonstrated good agreement between measured spectra and calculated TDDFT and sTDA spectra for 2 and 3 ML NPLs. The OPA red-shifts from 2 to 3 ML NPLs can be attributed to the electron delocalization in the lateral and vertical directions. TPA responses for CdS and CdSe NPLs were found to be dominated by weakly absorbing and forbidden OPA states.

9.
J Chem Phys ; 157(19): 190401, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414441
10.
J Chem Phys ; 157(13): 134105, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209020

RESUMO

We investigate the process of the second harmonic generation by plasmonic nano-antennas that exhibit Fano-like resonances. A rigorous fully vectorial Maxwell-hydrodynamics approach is employed to directly calculate the second order susceptibilities as a function of the pump frequency, considering a periodic array of nanodolmens comprised of three Au nanorods. The results of the numerical simulations demonstrate a noticeable enhancement of the second harmonic efficiency by the antisymmetric mode. Additionally, a simple analytical model based on two coupled nonlinear oscillators is proposed. It is shown that the second order optical response can be significantly enhanced at the frequency of the antisymmetric normal mode, thus supporting our numerical results.

11.
Nanoscale ; 14(31): 11378-11387, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899773

RESUMO

Although there is growing interest in enhancement of single-photon emission (SPE) in two-dimensional transition metal dichalcogenides, particularly when introducing strain by the generation of wrinkles in monolayer WSe2, understanding the effects of the wrinkle type on the response has been lacking. In this work, by investigating the electronic and optical properties of monolayer WSe2 with wrinkles by first principles calculations, we gain insight into the tunability of the response, where the band gap is found to be modulated by the wrinkle type. Our detailed analyses of the local electronic structures show that the strain distribution from regions with different local strain magnitudes and types affect the band alignments. We demonstrate that introducing a wrinkle in the monolayer results in a red-shift, including the bright A exciton and the lowest energy dark exciton, and the dependence on strain is consistent with available measurements. The energy difference between the A exciton and the lowest mid-gap energy for a single Se vacancy in the wrinkled WSe2 monolayer as a function of strain is consistent with a suggestion on the origin of SPE in monolayer WSe2. Our results will encourage engineering of wrinkle types for enhanced SPE at specific wavelengths, which could potentially originate from hybridization of the localized strained dark exciton and a mid-gap point-defect exciton.

12.
ACS Appl Mater Interfaces ; 14(22): 25907-25919, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622945

RESUMO

Van der Waals (vdW) heterostructures are constructed by different two-dimensional (2D) monolayers vertically stacked and weakly coupled by van der Waals interactions. VdW heterostructures often possess rich physical and chemical properties that are unique to their constituent monolayers. As many 2D materials have been recently identified, the combinatorial configuration space of vdW-stacked heterostructures grows exceedingly large, making it difficult to explore through traditional experimental or computational approaches in a trial-and-error manner. Here, we present a computational framework that combines first-principles electronic structure calculations, 2D material database, and supervised machine learning methods to construct efficient data-driven models capable of predicting electronic and structural properties of vdW heterostructures from their constituent monolayer properties. We apply this approach to predict the band gap, band edges, interlayer distance, and interlayer binding energy of vdW heterostructures. Our data-driven model will open avenues for efficient screening and discovery of low-dimensional vdW heterostructures and moiré superlattices with desired electronic and optical properties for targeted device applications.

13.
Phys Chem Chem Phys ; 24(18): 11234-11248, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481489

RESUMO

Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional. In aiming to improve on the accuracy of the calculated linear absorption, we report a theoretical study on phosphine-ligated gold clusters, specifically Au9(PR3)83+ and Au8(PR3)72+ characterized by highly resolved UV/Vis spectra, using mass-selective electronic absorption photofragmentation spectroscopy (A. Cirri, H. M. Hernández and C. J. Johnson, J. Phys. Chem. A, 2020, 124, 1467-1479, and references therein). The optical absorption spectra of the Au9(PR3)83+ and Au8(PR3)72+ clusters were calculated using TDDFT and the many-body GW (G-Green's function, and W-screened Coulomb interaction)-BSE (Bethe Salpeter Equation) method, and compared to the experimental measurements. The evGW-BSE results demonstrated fair agreement with the experimental data, comparable to the TDDFT results, but with less dependence on the reference exchange-correlation functional. Experimentally observed ligand-effects in these materials were reproduced in our calculations as well. Finally, to assess the utility of the materials for nonlinear optical absorption, a theoretical evaluation of two-photon absorption cross-sections is included.

14.
J Phys Condens Matter ; 34(20)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35226883

RESUMO

The doping of wide band-gap semiconducting ZnSe by transition metal (TM) atoms finds applications from mid-infrared lasing, sensing, photoelectrochemical cells, to nonlinear optics. Yet understanding the response of these materials at the atomic and electronic level is lacking, particularly in comparing a range of TM dopants, which were studied primarily by phenomenological crystal-field theory. In this work, to investigate bulk ZnSe singly doped with first-row TM atoms, specifically Ti through Cu, we applied a first-principles approach and crystal-field theory to explain the origin of the infrared absorption. We show that the use of an appropriate exchange-correlation functional and a HubbardUcorrection to account for electron correlation improved the determination of the electronic transitions in these systems. We outline an approach for the calculation of the crystal-field splitting from first-principles and find it useful in providing a measure of dopant effects, also in qualitative comparison to our experimental characterization for ZnSe doped with Fe, Cr, and Ni. Our calculated absorption spectra indicate absorption signatures in the mid-infrared range, while the absorption in the visible portion of the spectrum is attributed to the ZnSe host. Our calculations will potentially motivate further experimental exploration of TM-doped ZnSe. Finally, the methods used here provide a route towards computational high-throughput screening of TM dopants in III-V materials through a combination of the electronic band structure and crystal-field theory.

15.
Nanoscale ; 14(9): 3487-3495, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171187

RESUMO

In this work we synthesized vacancy-ordered lead-free layered double perovskite (LDP) nanoparticles. This structure consists of two layers of trivalent metal halide octahedra [B(III)X6]3- separated by a layer of divalent metal [B(II)X6]4- (B is a divalent or trivalent metal). The chemical formula of this structure is based on A4B(II)B(III)2X12 where A is Cs, B(III) is Bi, X is Cl and B(II) is a different ratio between Mn2+ and Cd2+. Well-defined colloidal nanoplates of Cs4CdxMn1-xBi2Cl12 were successfully synthesized. These nanoplates show photoluminescence (PL) in the orange to red region that can be tuned by changing the Cd/Mn ratio. High resolution scanning transmission electron microscopy (HR-STEM) and atomic resolution elemental analysis were performed on these lead free LDP nanoplates revealing two different particle compositions that can be controlled by the Cd/Mn ratio. Ultraviolet Photoelectron Spectroscopy (UPS) and scanning tunneling spectroscopy (STS) reveal the band gap structure of these LDP nanoplates. Density functional theory (DFT) calculations show the existence of [MnCl6]4- in-gap states. While the absorption occurs from the valence band maximum (VBM) to the conduction band minimum (CBM), the emission may occur from the CBM to an in-gap band maximum (IGM), which could explain the PL in the orange to red region of these nanoplates. This work provides a detailed picture of the chemical and electronic properties of LDP nanoparticles.

16.
ACS Nano ; 15(12): 20550-20561, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34882393

RESUMO

Halide perovskites doped with magnetic impurities (such as the transition metals Mn2+, Co2+, Ni2+) are being explored for a wide range of applications beyond photovoltaics, such as spintronic devices, stable light-emitting diodes, single-photon emitters, and magneto-optical devices. However, despite several recent studies, there is no consensus on whether the doped magnetic ions will predominantly replace the octahedral B-site metal via substitution or reside at interstitial defect sites. Here, by performing correlated nanoscale X-ray microscopy, spatially and temporally resolved photoluminescence measurements, and magnetic force microscopy on the inorganic 2D perovskite Cs2PbI2Cl2, we show that doping Mn2+ into the structure results in a lattice expansion. The observed lattice expansion contrasts with the predicted contraction expected to arise from the B-site metal substitution, thus implying that Mn2+ does not replace the Pb2+ sites. Photoluminescence and electron paramagnetic resonance measurements confirm the presence of Mn2+ in the lattice, while correlated nano-XRD and X-ray fluorescence track the local strain and chemical composition. Density functional theory calculations predict that Mn2+ atoms reside at the interstitial sites between two octahedra in the triangle formed by one Cl- and two I- atoms, which results in a locally expanded structure. These measurements show the fate of the transition metal dopants, the local structure, and optical emission when they are doped at dilute concentrations into a wide band gap semiconductor.

17.
Appl Opt ; 60(25): G232-G242, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613214

RESUMO

Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) MoS2 upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D MoS2, the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T' phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D MoS2 films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D MoS2 on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.

18.
J Chem Phys ; 155(9): 094302, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496584

RESUMO

In the present study, we systematically examine structures and absorption spectra for CdS nanoplatelets (NPLs) with thicknesses of two and three monolayers (2 MLs and 3 MLs) and extended lateral dimensions. These nanoplatelet model systems, passivated with formate and acetate ligands, are used to analyze the effects of quantum confinement in the lateral dimension within an extended monolayer and the effects of thickness when changing from two to three monolayers. Based on the computed cubic structures using density functional theory (DFT), we found good agreement between observed and time-dependent DFT-calculated spectra, revealing little ligand participation to influence the color and intensity of low-energy absorption bands as the structures are laterally extended to eight and seven monolayers for 2-ML and 3-ML systems, respectively. The spectral redshift for 3-ML CdS NPLs is attributed to the electron delocalization due to expansion of the nanoplatelet in the lateral and vertical directions.

19.
Langmuir ; 37(18): 5447-5456, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929862

RESUMO

Precise tailoring of two-dimensional nanosheets with organic molecules is critical to passivate the surface and control the reactivity, which is essential for a wide range of applications. Herein, we introduce catechols to functionalize exfoliated MXenes (Ti3C2Tx) in a colloidal suspension. Catechols react spontaneously with Ti3C2Tx surfaces, where binding is initiated from a charge-transfer complex as confirmed by density functional theory (DFT) and UV-vis. Ti3C2Tx sheet interlayer spacing is increased by catechol functionalization, as confirmed by X-ray diffraction (XRD), while Raman and atomic force microscopy-infrared spectroscopy (AFM-IR) measurements indicate binding of catechols at the Ti3C2Tx surface occurs through metal-oxygen bonds, which is supported by DFT calculations. Finally, we demonstrate immobilization of a fluorescent dye on the surface of MXene. Our results establish a strategy for tailoring MXene surfaces via aqueous functionalization with catechols, whereby colloidal stability can be modified and further functionality can be introduced, which could provide excellent anchoring points to grow polymer brushes and tune specific properties.

20.
ACS Nano ; 15(2): 2771-2777, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33502839

RESUMO

The versatile property suite of two-dimensional MXenes is driving interest in various applications, including energy storage, electromagnetic shielding, and conductive coatings. Conventionally, MXenes are synthesized by a wet-chemical etching of the parent MAX-phase in HF-containing media. The acute toxicity of HF hinders scale-up, and competing surface hydrolysis challenges control of surface composition and grafting methods. Herein, we present an efficient, room-temperature etching method that utilizes halogens (Br2, I2, ICl, IBr) in anhydrous media to synthesize MXenes from Ti3AlC2. A radical-mediated process depends strongly on the molar ratio of the halogen to MAX phase, absolute concentration of the halogen, the solvent, and temperature. This etching method provides opportunities for controlled surface chemistries to modulate MXene properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...