Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(48): 17551-17559, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37987777

RESUMO

To improve the rate of DWC, numerous studies have adjusted the distribution of drops through biphilic surface patterning and wettability gradients to control the nucleation and drop shedding rates on the condensing surface, yet the connection between drop shedding mechanisms and surface wettability patterning remains unclear. Moreover, wettability patterning places geometric bounds on the governing forces (i.e., gravity, capillary, and inertia), which drive the droplet shedding mechanisms. Thus, the subsequent influence of droplet distribution along the DWC regions on the shedding mechanisms may not be known a priori. In this study, the area fraction, ADWC, of the DWC and also the DWC region width, LN, were varied between 10 and 50% and 0.5-1.5 mm, respectively, to probe the dominant droplet shedding mechanisms on a high wettability contrast surface (i.e., the contact angle on the DWC was 159 ± 3.4° and the hysteresis 9 ± 3.6°, whereas the FWC was nearly perfectly wetting). Humid air was introduced inside a custom-built chamber with the upright steady-state condensation imaged by both real-time and high-speed imaging techniques. We found that the droplet shedding mechanisms changed with increasing LN where the sliding drop radii are reduced with LN while the jumping drop radii remained unchanged with LN. The maximum drop size for shedding also decreased by 13%, which we attribute to the secondary droplet inertia, which helps gravity overcome the capillary retention force. Lastly, although many studies have probed DWC enhancements via surface wettability patterning, an optimal combination of ADWC and LN provided in this study significantly aids in the improvement of future DWC-based condensers and water collector applications.

2.
Langmuir ; 38(3): 1243-1251, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35025520

RESUMO

While drop oscillation dynamics has been widely studied for many decades, the influence of a moving contact line on the oscillation modes of drops remains underexplored. Herein, we report the oscillation dynamics of drops on thin liquid films with different viscosities where lower viscosities provide a slipping surface and higher viscosities immobilize the contact line. A gently deposited drop onto an oil film undergoes shape oscillations due to capillarity, where the frequency, amplitude, and apparent contact angle are tracked via a high-speed camera. This study demonstrates that restraining the mobility of the drop contact line by increasing the viscosity of a thin oil film underneath the drop increases the extent of the drop oscillation time as well as affecting the natural frequency of the drop oscillation. The drop oscillation time was defined by the time at which the changes in the drop height dropped to values less than 1% of the equilibrium height. The experimental results for the first longitudinal mode oscillation frequencies as a function of the equilibrium contact angles for the pinning and slipping contact lines were in good agreement with previously reported numerical simulations and model predictions.

3.
Langmuir ; 37(33): 10135-10142, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34379973

RESUMO

For drops to contact various surfaces, the removal of the interstitial fluid is the prerequisite to contact. While the conventional understanding is for drops to irreversibly spread on a film made of the same substance, we describe the dynamics of drops initiating contact yet carrying enough momentum to completely lift off of the substrate which we label as contact bouncing. We report new experimental results of the dynamics between drops impacting thin films described by the ratio of the liquid film hL to the drop with diameter D0 for the range of 0.004 < hL/D0 < 0.08. Using high-speed interferometry, we visualize the interfacial gas layer spatiotemporal signatures across the various film thicknesses and Weber numbers. We find that while increasing the deformability of the thin films enhances the gas entrainment phenomenon at early times, it also increases the rate of the gas purging rate, increasing the chance of contact just prior to the gas film retraction and drop lift off sequence. Drops which contact the liquid film during the retraction stage are able to bounce with <5% volume loss.

4.
Biofabrication ; 12(4): 045018, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650325

RESUMO

Technology of tissue-engineering advanced rapidly in the last decade and motivated numerous studies in cell-engineering and biofabrication. Three-dimensional (3D) tissue-engineering scaffolds play a critical role in this field, as the scaffolds provide the biomimetic microenvironments that could stimulate desired cell behaviors for regeneration. However, despite many achievements, the fabrication of 3D scaffold remains challenging due to the difficulty of encapsulating cells in 3D scaffolds, controlling cell-cell organization in 3D, and being adapted by users unfamiliar with 3D biofabrication. In this study, we circumvent these obstacles by creating a four-dimensional (4D) inkjet-printing platform. This platform produces micropatterns that self-fold into a 3D scaffold. Seeding live cells uniformly onto the micropatterns before self-folding leads to cell-encapsulating 3D scaffolds with layer-wise cell-cell organization. Photo-crosslinkable biomaterial-inks of distinct swelling rates were synthesized from gelatin, and the biomaterial-inks were patterned by a customized high-precision inkjet-printer into bilayer micropatterns that were capable of self-folding into 3D microstructures. A mathematical model was developed to help design self-folding and to aid the understanding of the self-folding mechanism. Human umbilical vein endothelial cells (HUVECs) were embedded in self-folded microtubes to mimic microvessels. HUVECs in the microtube spread, proliferated, showed high cell viability, and engrafted on the microtube's inner wall mimicking the native endothelial cells. For physician and biologist end-users, this 4D printing method provides an easy-to-use platform that supports standard two-dimensional cell-seeding protocol while enabling the users to customize 3D cellularized scaffold as desired. This work demonstrated 4D printing as a promising tool for tissue-engineering applications.


Assuntos
Células Imobilizadas/citologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Sobrevivência Celular , Preparações de Ação Retardada , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Tinta , Modelos Teóricos , Temperatura
5.
Soft Matter ; 14(47): 9599-9608, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457136

RESUMO

Contact line dynamics is crucial in determining the deposition patterns of evaporating colloidal droplets. Using high-speed interferometry, we directly observe the stick-slip motion of the contact line in situ and are able to resolve the instantaneous shape of the inkjet-printed, evaporating pico-liter drops containing nanoparticles of varying wettability. Integrated with post-mortem optical profilometry of the deposition patterns, the instantaneous particle volume fraction and hence the particle deposition rate can be determined. The results show that the stick-slip motion of the contact line is a strong function of the particle wettability. While the stick-slip motion is observed for nanoparticles that are less hydrophilic (i.e., particle contact angle θ ≈ 74° at the water-air interface), which results in a multiring deposition, a continuous receding of the contact line is observed for more hydrophilic nanoparticles (i.e., θ ≈ 34°), which leaves a single-ring pattern. A model is developed to predict the number of particles required to pin the contact line based on the force balance of the hydrodynamic drag, interparticle interactions, and surface tension acting on the particles near the contact line with varying particle wettability. A three-fold increase in the number of particles required for pinning is predicted when the particle wettability increases from the wetting angle of θ ≈ 74° to θ ≈ 34°. This finding explains why particles with greater wettability form a single-ring pattern and those with lower wettability form a multi-ring pattern. In addition, the particle deposition rate is found to depend on the particle wettability and vary with time.

6.
Langmuir ; 34(17): 4962-4969, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620373

RESUMO

Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

7.
Langmuir ; 32(45): 11899-11906, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788012

RESUMO

Ellipsoidal particles have previously been shown to suppress the coffee-ring effect in millimeter-sized colloidal droplets. Compared to their spherical counterparts, ellipsoidal particles experience stronger adsorption energy to the drop surface where the anisotropy-induced deformation of the liquid-air interface leads to much greater capillary attractions between particles. Using inkjet-printed colloidal drops of varying drop size, particle concentration, and particle aspect ratio, the present work demonstrates how the suppression of the coffee ring is not only a function of particle anisotropy but rather a competition between the propensity for particles to assemble at the drop surface via capillary interactions and the evaporation-driven particle motion to the contact line. For ellipsoidal particles on the drop surface, the capillary force (Fγ) increases with the particle concentration and aspect ratio, and the hydrodynamic force (Fµ) increases with the particle aspect ratio but decreases with drop size. When Fγ/Fµ > 1, the surface ellipsoids form a coherent network inhibiting their migration to the drop contact line, and the coffee-ring effect is suppressed, whereas when Fγ/Fµ < 1, the ellipsoids move to the contact line, resulting in coffee-ring deposition.

8.
Langmuir ; 31(29): 7953-61, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26132211

RESUMO

Recent interest in printable electronics and in particular paper- and textile-based electronics has fueled research in inkjet printing of colloidal drops on porous substrates. On nonporous substrates, the interplay of particle motion and solvent evaporation determines the final deposition morphology of the evaporating colloidal drop. For porous substrates, solvent infiltration into the pores adds a layer of complexity to the deposition patterns that have not been fully elucidated in the literature. In this study, the deposition of picoliter-sized aqueous colloidal droplets containing nanometer- and micrometer-sized particles onto nanoporous anodic aluminum oxide substrates is examined for different drop and particle sizes and relative humidities as well as pore diameters, porosities, and wettabilities of the porous substrates. For the cases considered, solvent infiltration is found to be much faster than both evaporation and particle motion near the contact line, and thus when the substrate fully imbibes the solvent, the well-known "coffee-ring" deposition is suppressed. However, when the solvent is only partially imbibed, a residual droplet volume exists upon completion of the infiltration. For such cases, two time scales are of importance: the time for particle motion to the contact line as a result of both diffusion and advection, t(P), and the evaporation time of the residual drop volume, t(EI). Their ratio, t(P)/t(EI), determines whether the coffee-ring deposition will be formed (t(P)/t(EI) < 1) or suppressed (t(P)/t(EI) > 1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...