Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(5): e12447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766978

RESUMO

The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Polimixina B , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Animais , Polimixina B/farmacologia , Membrana Externa Bacteriana/metabolismo , Polimixinas/farmacologia , Vesículas Extracelulares/metabolismo , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
2.
Nature ; 628(8009): 894-900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600380

RESUMO

Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpinski triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.


Assuntos
Citrato (si)-Sintase , Evolução Molecular , Fractais , Multimerização Proteica , Synechococcus , Microscopia Crioeletrônica , Modelos Moleculares , Synechococcus/enzimologia , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/ultraestrutura
3.
FEBS J ; 291(11): 2449-2460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468562

RESUMO

In the hydrogenotrophic methanogenic pathway, formylmethanofuran dehydrogenase (Fmd) catalyzes the formation of formylmethanofuran through reducing CO2. Heterodisulfide reductase (Hdr) provides two low potential electrons for the Fmd reaction using a flavin-based electron-bifurcating mechanism. [NiFe]-hydrogenase (Mvh) or formate dehydrogenase (Fdh) complexes with Hdr and provides electrons to Hdr from H2 and formate, or the reduced form of F420, respectively. Recently, an Fdh-Hdr complex was purified as a 3-MDa megacomplex that contained Fmd, and its three-dimensional structure was elucidated by cryo-electron microscopy. In contrast, the Mvh-Hdr complex has been characterized only as a complex without Fmd. Here, we report the isolation and characterization of a 1-MDa Mvh-Hdr-Fmd megacomplex from Methanothermobacter marburgensis. After anion-exchange and hydrophobic chromatography was performed, the proteins with Hdr activity eluted in the 1- and 0.5-MDa fractions during size exclusion chromatography. Considering the apparent molecular mass and the protein profile in the fractions, the 1-MDa megacomplex was determined to be a dimeric Mvh-Hdr-Fmd complex. The megacomplex fraction contained a polyferredoxin subunit MvhB, which contains 12 [4Fe-4S]-clusters. MvhB polyferredoxin has never been identified in the previously purified Mvh-Hdr and Fmd preparations, suggesting that MvhB polyferredoxin is stabilized by the binding between Mvh-Hdr and Fmd in the Mvh-Hdr-Fmd complex. The purified Mvh-Hdr-Fmd megacomplex catalyzed electron-bifurcating reduction of [13C]-CO2 to form [13C]-formylmethanofuran in the absence of extrinsic ferredoxin. These results demonstrated that the subunits in the Mvh-Hdr-Fmd megacomplex are electronically connected for the reduction of CO2, which likely involves MvhB polyferredoxin as an electron relay.


Assuntos
Dióxido de Carbono , Hidrogênio , Methanobacteriaceae , Methanobacteriaceae/metabolismo , Methanobacteriaceae/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Oxirredutases/metabolismo , Oxirredutases/química , Ferredoxinas/metabolismo , Ferredoxinas/química , Oxirredução , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Elétrons , Hidrogenase/metabolismo , Hidrogenase/química
4.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38011998

RESUMO

2-Hydroxyglutarate (2-HG) is an oncometabolite that accumulates in certain cancers. Gain-of-function mutations in isocitrate dehydrogenase lead to 2-HG accumulation at the expense of alpha-ketoglutarate. Elevated 2-HG levels inhibit histone and DNA demethylases, causing chromatin structure and gene regulation changes with tumorigenic consequences. We investigated the effects of elevated 2-HG levels in Saccharomyces cerevisiae, a yeast devoid of DNA methylation and heterochromatin-associated histone methylation. Our results demonstrate genetic background-dependent gene expression changes and altered H3K4 and H3K36 methylation at specific loci. Analysis of histone demethylase deletion strains indicated that 2-HG inhibits Rph1 sufficiently to induce extensive gene expression changes. Rph1 is the yeast homolog of human KDM4 demethylases and, among the yeast histone demethylases, was the most sensitive to the inhibitory effect of 2-HG in vitro. Interestingly, Rph1 deficiency favors gene repression and leads to further down-regulation of already silenced genes marked by low H3K4 and H3K36 trimethylation, but abundant in H3K36 dimethylation. Our results provide novel insights into the genome-wide effects of 2-HG and highlight Rph1 as its preferential demethylase target.


Assuntos
Histona Desmetilases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Metilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Angew Chem Int Ed Engl ; 63(6): e202316478, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100251

RESUMO

[Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18 O1 -carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18 O-labeled FeGP cofactor revealed that the produced [18 O1 ]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2 -activating natural complex.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Ligantes , Espectrometria de Massas em Tandem , Fotólise , Carbono , Proteínas Ferro-Enxofre/química
6.
ACS Synth Biol ; 12(12): 3521-3530, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983631

RESUMO

Glycolyl-CoA carboxylase (GCC) is a new-to-nature enzyme that catalyzes the key reaction in the tartronyl-CoA (TaCo) pathway, a synthetic photorespiration bypass that was recently designed to improve photosynthetic CO2 fixation. GCC was created from propionyl-CoA carboxylase (PCC) through five mutations. However, despite reaching activities of naturally evolved biotin-dependent carboxylases, the quintuple substitution variant GCC M5 still lags behind 4-fold in catalytic efficiency compared to its template PCC and suffers from futile ATP hydrolysis during CO2 fixation. To further improve upon GCC M5, we developed a machine learning-supported workflow that reduces screening efforts for identifying improved enzymes. Using this workflow, we present two novel GCC variants with 2-fold increased carboxylation rate and 60% reduced energy demand, respectively, which are able to address kinetic and thermodynamic limitations of the TaCo pathway. Our work highlights the potential of combining machine learning and directed evolution strategies to reduce screening efforts in enzyme engineering.


Assuntos
Dióxido de Carbono , Carboxiliases , Dióxido de Carbono/metabolismo , Carboxiliases/metabolismo , Metilmalonil-CoA Descarboxilase , Biotina/metabolismo , Acetil-CoA Carboxilase/genética
7.
Nat Microbiol ; 8(12): 2378-2391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973866

RESUMO

Development of microbial communities is a complex multiscale phenomenon with wide-ranging biomedical and ecological implications. How biological and physical processes determine emergent spatial structures in microbial communities remains poorly understood due to a lack of simultaneous measurements of gene expression and cellular behaviour in space and time. Here we combined live-cell microscopy with a robotic arm for spatiotemporal sampling, which enabled us to simultaneously acquire phenotypic imaging data and spatiotemporal transcriptomes during Bacillus subtilis swarm development. Quantitative characterization of the spatiotemporal gene expression patterns revealed correlations with cellular and collective properties, and phenotypic subpopulations. By integrating these data with spatiotemporal metabolome measurements, we discovered a spatiotemporal cross-feeding mechanism fuelling swarm development: during their migration, earlier generations deposit metabolites which are consumed by later generations that swarm across the same location. These results highlight the importance of spatiotemporal effects during the emergence of phenotypic subpopulations and their interactions in bacterial communities.


Assuntos
Bacillus subtilis , Microscopia , Bacillus subtilis/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
8.
Nat Commun ; 14(1): 7597, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989750

RESUMO

NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.


Assuntos
NAD , RNA , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Archaea/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Nat Commun ; 14(1): 5818, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783679

RESUMO

Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.


Assuntos
Infecções Bacterianas , Nicotinamida-Nucleotídeo Adenililtransferase , Infecções Respiratórias , Humanos , NAD/metabolismo , Proteômica , Citocinas/metabolismo , Linhagem Celular , Trifosfato de Adenosina , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
10.
Sci Adv ; 9(24): eadh4299, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315145

RESUMO

Nature has evolved eight different pathways for the capture and conversion of CO2, including the Calvin-Benson-Bassham cycle of photosynthesis. Yet, these pathways underlie constrains and only represent a fraction of the thousands of theoretically possible solutions. To overcome the limitations of natural evolution, we introduce the HydrOxyPropionyl-CoA/Acrylyl-CoA (HOPAC) cycle, a new-to-nature CO2-fixation pathway that was designed through metabolic retrosynthesis around the reductive carboxylation of acrylyl-CoA, a highly efficient principle of CO2 fixation. We realized the HOPAC cycle in a step-wise fashion and used rational engineering approaches and machine learning-guided workflows to further optimize its output by more than one order of magnitude. Version 4.0 of the HOPAC cycle encompasses 11 enzymes from six different organisms, converting ~3.0 mM CO2 into glycolate within 2 hours. Our work moves the hypothetical HOPAC cycle from a theoretical design into an established in vitro system that forms the basis for different potential applications.


Assuntos
Dióxido de Carbono , Procedimentos de Cirurgia Plástica , Fotossíntese , Engenharia , Aprendizado de Máquina
11.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318336

RESUMO

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Assuntos
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
12.
Nat Commun ; 14(1): 2682, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160875

RESUMO

Formate can be envisioned at the core of a carbon-neutral bioeconomy, where it is produced from CO2 by (electro-)chemical means and converted into value-added products by enzymatic cascades or engineered microbes. A key step in expanding synthetic formate assimilation is its thermodynamically challenging reduction to formaldehyde. Here, we develop a two-enzyme route in which formate is activated to formyl phosphate and subsequently reduced to formaldehyde. Exploiting the promiscuity of acetate kinase and N-acetyl-γ-glutamyl phosphate reductase, we demonstrate this phosphate (Pi)-based route in vitro and in vivo. We further engineer a formyl phosphate reductase variant with improved formyl phosphate conversion in vivo by suppressing cross-talk with native metabolism and interface the Pi route with a recently developed formaldehyde assimilation pathway to enable C2 compound formation from formate as the sole carbon source in Escherichia coli. The Pi route therefore offers a potent tool in expanding the landscape of synthetic formate assimilation.


Assuntos
Formiatos , Fosfatos , Carbono , Escherichia coli/genética , Formaldeído
13.
Appl Environ Microbiol ; 89(6): e0011323, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184406

RESUMO

Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.


Assuntos
Asparagina , Methylocystaceae , Asparagina/metabolismo , Methylocystaceae/metabolismo , Ácido Aspártico , Proteoma/metabolismo , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Metano/metabolismo , Estresse Salino , Piruvatos/metabolismo
14.
Metab Eng ; 76: 97-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731627

RESUMO

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plásticos/metabolismo , Etilenoglicol/metabolismo , Polietilenotereftalatos/metabolismo , Carbono/metabolismo
15.
Nat Chem Biol ; 19(2): 168-175, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470994

RESUMO

Anaplerosis is an essential feature of metabolism that allows the continuous operation of natural metabolic networks, such as the citric acid cycle, by constantly replenishing drained intermediates. However, this concept has not been applied to synthetic in vitro metabolic networks, thus far. Here we used anaplerotic strategies to directly access the core sequence of the CETCH cycle, a new-to-nature in vitro CO2-fixation pathway that features several C3-C5 biosynthetic precursors. We drafted four different anaplerotic modules that use CO2 to replenish the CETCH cycle's intermediates and validated our designs by producing 6-deoxyerythronolide B (6-DEB), the C21-macrolide backbone of erythromycin. Our best design allowed the carbon-positive synthesis of 6-DEB via 54 enzymatic reactions in vitro at yields comparable to those with isolated 6-DEB polyketide synthase (DEBS). Our work showcases how new-to-nature anaplerotic modules can be designed and tailored to enhance and expand the synthetic capabilities of complex catalytic in vitro reaction networks.


Assuntos
Dióxido de Carbono , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Macrolídeos , Eritromicina , Antibacterianos
16.
Angew Chem Int Ed Engl ; 61(50): e202213239, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264001

RESUMO

In the biosynthesis of the iron-guanylylpyridinol (FeGP) cofactor, 6-carboxymethyl-5-methyl-4-hydroxy-2-pyridinol (1) is 3-methylated to form 2, then 4-guanylylated to form 3, and converted into the full cofactor. HcgA-G proteins catalyze the biosynthetic reactions. Herein, we report the function of two radical S-adenosyl methionine enzymes, HcgA and HcgG, as uncovered by in vitro complementation experiments and the use of purified enzymes. In vitro biosynthesis using the cell extract from the Methanococcus maripaludis ΔhcgA strain was complemented with HcgA or precursors 1, 2 or 3. The results suggested that HcgA catalyzes the biosynthetic reaction that forms 1. We demonstrated the formation of 1 by HcgA using the 3 kDa cell extract filtrate as the substrate. Biosynthesis in the ΔhcgG system was recovered by HcgG but not by 3, which indicated that HcgG catalyzes the reactions after the biosynthesis of 3. The data indicated that HcgG contributes to the formation of CO and completes biosynthesis of the FeGP cofactor.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Extratos Celulares , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Ferro/metabolismo
17.
Angew Chem Int Ed Engl ; 61(51): e202206106, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198080

RESUMO

Benzoxazolinate is a rare bis-heterocyclic moiety that interacts with proteins and DNA and confers extraordinary bioactivities on natural products, such as C-1027. However, the biosynthetic gene responsible for the key cyclization step of benzoxazolinate remains unclear. Herein, we show a putative acyl AMP-ligase responsible for the last cyclization step. We used the enzyme as a probe for genome mining and discovered that the orphan benzobactin gene cluster in entomopathogenic bacteria prevails across Proteobacteria and Firmicutes. It turns out that Pseudomonas chlororaphis produces various benzobactins, whose biosynthesis is highlighted by a synergistic effect of two unclustered genes encoding enzymes on boosting benzobactin production; the formation of non-proteinogenic 2-hydroxymethylserine by a serine hydroxymethyltransferase; and the types I and II NRPS architecture for structural diversity. Our findings reveal the biosynthetic potential of a widespread benzobactin gene cluster.


Assuntos
Produtos Biológicos , Produtos Biológicos/metabolismo , Bactérias/metabolismo , Família Multigênica , Peptídeo Sintases/metabolismo
18.
mSystems ; 7(5): e0040322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154142

RESUMO

A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.


Assuntos
Methylocystaceae , Oxirredução , Áreas Alagadas , Metano/metabolismo , Aminoácidos/metabolismo
19.
Nat Commun ; 13(1): 3876, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790733

RESUMO

Optimization of biological networks is often limited by wet lab labor and cost, and the lack of convenient computational tools. Here, we describe METIS, a versatile active machine learning workflow with a simple online interface for the data-driven optimization of biological targets with minimal experiments. We demonstrate our workflow for various applications, including cell-free transcription and translation, genetic circuits, and a 27-variable synthetic CO2-fixation cycle (CETCH cycle), improving these systems between one and two orders of magnitude. For the CETCH cycle, we explore 1025 conditions with only 1,000 experiments to yield the most efficient CO2-fixation cascade described to date. Beyond optimization, our workflow also quantifies the relative importance of individual factors to the performance of a system identifying unknown interactions and bottlenecks. Overall, our workflow opens the way for convenient optimization and prototyping of genetic and metabolic networks with customizable adjustments according to user experience, experimental setup, and laboratory facilities.


Assuntos
Dióxido de Carbono , Redes e Vias Metabólicas , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Aprendizado de Máquina Supervisionado , Fluxo de Trabalho
20.
Nat Metab ; 4(5): 589-607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35618940

RESUMO

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Assuntos
Oxirredutases , Doença de Parkinson , Proteína Desglicase DJ-1 , Piruvatos , Linfócitos T Reguladores , Envelhecimento , Animais , Homeostase , Camundongos , Oxirredutases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Piruvatos/metabolismo , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...