Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 31(3): 1135-41, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25557142

RESUMO

The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.

2.
ACS Appl Mater Interfaces ; 6(21): 19135-43, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25275708

RESUMO

Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

3.
Langmuir ; 30(30): 9228-38, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25033766

RESUMO

Atomic layer deposition provides the opportunity to introduce nanoscale inorganic coatings to organic polymers creating coatings of varied compositions of finish with distinctive interfaces. Prior research has shown that ALD materials nucleation on polymers varies in composition and structure based on how the precursor interacts with the polymer chemistry and the process conditions. To study this in more detail, in situ quartz crystal microgravimetry is employed to understand the infiltration and saturation behavior of trimethylaluminum in polyamide-6, poly(acrylic acid), poly(ethylene terephthalate), and poly(methyl methacrylate). Emphasis is placed on understanding reactive vapor diffusion into these polymers as the exposure temperature is varied. Finally, we propose potential growth mechanisms based on the temperature-dependent observations in this work that enables the ability to produce a customized interface for ALD materials growth on polymer substrates.

4.
Langmuir ; 28(44): 15697-704, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23050951

RESUMO

The characteristic processing behavior for growth of a conformal nanoscale hybrid organic-inorganic modification to polyamide 6 (PA6) by sequential vapor infiltration (SVI) is demonstrated. The SVI process is a materials growth technique by which exposure of organometallic vapors to a polymeric material promotes the formation of a hybrid organic-inorganic modification at the near surface region of the polymer. This work investigates the SVI exposure temperature and cycling times of sequential exposures of trimethylaluminum (TMA) on PA6 fiber mats. The result of TMA exposure is the preferential subsurface organic-inorganic growth by diffusion into the polymer and reaction with the carbonyl in PA6. Mass gain, infrared spectroscopy, and transmission electron microscopy analysis indicate enhanced materials growth and uniformity at lower processing temperatures. The inverse relationship between mass gain and exposure temperature is explained by the formation of a hybrid layer that prevents the diffusion of TMA into the polymer to react with the PA6 upon subsequent exposure cycles. As few as 10 SVI exposure cycles are observed to saturate the growth, yielding a modified thickness of ∼75 nm and mass increase of ∼14 wt %. Removal of the inherent PA6 moisture content reduces the mass gain by ∼4 wt % at low temperature exposures. The ability to understand the characteristic growth process is critical for the development of the hybrid materials fabrication and modification techniques.


Assuntos
Alumínio/química , Caprolactama/análogos & derivados , Compostos Organometálicos/química , Polímeros/química , Temperatura , Caprolactama/química , Tamanho da Partícula , Propriedades de Superfície , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...