Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(10): 866-884.e8, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37054706

RESUMO

ATG5 is a part of the E3 ligase directing lipidation of ATG8 proteins, a process central to membrane atg8ylation and canonical autophagy. Loss of Atg5 in myeloid cells causes early mortality in murine models of tuberculosis. This in vivo phenotype is specific to ATG5. Here, we show using human cell lines that absence of ATG5, but not of other ATGs directing canonical autophagy, promotes lysosomal exocytosis and secretion of extracellular vesicles and, in murine Atg5fl/fl LysM-Cre neutrophils, their excessive degranulation. This is due to lysosomal disrepair in ATG5 knockout cells and the sequestration by an alternative conjugation complex, ATG12-ATG3, of ESCRT protein ALIX, which acts in membrane repair and exosome secretion. These findings reveal a previously undescribed function of ATG5 in its host-protective role in murine experimental models of tuberculosis and emphasize the significance of the branching aspects of the atg8ylation conjugation cascade beyond the canonical autophagy.


Assuntos
Proteínas Associadas aos Microtúbulos , Tuberculose , Humanos , Animais , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia
2.
Autophagy ; 19(8): 2391-2392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36571474

RESUMO

The precursors to mammalian autophagosomes originate from preexisting membranes contributed by a number of sources, and subsequently enlarge through intermembrane lipid transfer, then close to sequester the cargo, and merge with lysosomes to degrade the cargo. Using cellular and in vitro membrane fusion analyses coupled with proteomic and biochemical studies we show that autophagosomes are formed from a hybrid membrane compartment referred to as a prophagophore or HyPAS (hybrid preautophagosomal structure). HyPAS is initially LC3-negative and subsequently becomes an LC3-positive phagophore. The prophagophore emerges through fusion of RB1CC1/FIP200-containing vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes. A specialized Ca2+-responsive apparatus controls prophagophore biogenesis and can be modulated by pharmacological agents such as SIGMAR1 agonists and antagonists including chloroquine. Autophagic prophagophore formation is inhibited during SARS-CoV-2 infection and is recapitulated by expression of SARS-CoV-2 nsp6. These findings show that mammalian autophagosomal prophagophores emerge via the convergence of secretory and endosomal pathways in a process that is targeted by microbial factors including coronaviral membrane proteins.Abbreviations: CLEM, correlative light and electron microscopy; CQ, chloroquine; HyPAS, hybrid preautophagosomal; strcuture/prophagophore; LC3, microtubule associated protein 1 light chain 3; RUPEX, a combination of RUSH and APEX2 systems; SARS-CoV-2, SARS-CoV-2 virus, causative agent of COVID19.


Assuntos
Autofagossomos , COVID-19 , Humanos , Animais , Autofagossomos/metabolismo , Autofagia , Proteômica , SARS-CoV-2 , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...