Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(7): 892-912, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38415360

RESUMO

BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miocardite , Humanos , Camundongos , Animais , Conexina 43/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Miócitos Cardíacos/fisiologia , Junções Comunicantes , Adenoviridae/genética , Morte Súbita Cardíaca
2.
BMC Biol ; 20(1): 261, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424632

RESUMO

BACKGROUND: Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS: NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS: Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.


Assuntos
Ácido Fólico , Células-Tronco Neurais , Camundongos , Animais , RNA , Células-Tronco Neurais/metabolismo , Metilação de DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
3.
Sci Rep ; 10(1): 17289, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057157

RESUMO

Recent studies revealed that relatively small changes in perfusate sodium ([Na+]o) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+]o modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+]o that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia-reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia-reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+]o decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+]o at baseline and reduced the time to peak ischemic contracture. Ischemia-reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+]o further depressed mechanical function. In summary, elevating [Na+]o by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+]o, with cardiac ischemia may require further investigation.


Assuntos
Coração/fisiopatologia , Isquemia Miocárdica/metabolismo , Sódio/metabolismo , Animais , Humanos , Masculino , Contração Miocárdica , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/cirurgia , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Trocador de Sódio e Cálcio/metabolismo
4.
FASEB J ; 34(7): 9694-9712, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485054

RESUMO

Adenoviruses are responsible for a spectrum of pathogenesis including viral myocarditis. The gap junction protein connexin43 (Cx43, gene name GJA1) facilitates rapid propagation of action potentials necessary for each heartbeat. Gap junctions also propagate innate and adaptive antiviral immune responses, but how viruses may target these structures is not understood. Given this immunological role of Cx43, we hypothesized that gap junctions would be targeted during adenovirus type 5 (Ad5) infection. We find reduced Cx43 protein levels due to decreased GJA1 mRNA transcripts dependent upon ß-catenin transcriptional activity during Ad5 infection, with early viral protein E4orf1 sufficient to induce ß-catenin phosphorylation. Loss of gap junction function occurs prior to reduced Cx43 protein levels with Ad5 infection rapidly inducing Cx43 phosphorylation events consistent with altered gap junction conductance. Direct Cx43 interaction with ZO-1 plays a critical role in gap junction regulation. We find loss of Cx43/ZO-1 complexing during Ad5 infection by co-immunoprecipitation and complementary studies in human induced pluripotent stem cell derived-cardiomyocytes reveal Cx43 gap junction remodeling by reduced ZO-1 complexing. These findings reveal specific targeting of gap junction function by Ad5 leading to loss of intercellular communication which would contribute to dangerous pathological states including arrhythmias in infected hearts.


Assuntos
Infecções por Adenoviridae/patologia , Adenoviridae/fisiologia , Comunicação Celular , Conexina 43/metabolismo , Junções Comunicantes/patologia , Miócitos Cardíacos/patologia , Transcrição Gênica , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Células Cultivadas , Conexina 43/genética , Junções Comunicantes/virologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Fosforilação
5.
Mech Dev ; 156: 8-19, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796970

RESUMO

Blood vessel maturation, which is characterized by the investment of vascular smooth muscle cells (vSMCs) around developing blood vessels, begins when vessels remodel into a hierarchy of proximal arteries and proximal veins that branch into smaller distal capillaries. The ultimate result of maturation is formation of the tunica media-the middlemost layer of a vessel that is composed of vSMCs and acts to control vessel integrity and vascular tone. Though many studies have implicated the role of various signaling molecules in regulating maturation, no studies have determined a role for hemodynamic force in the regulation of maturation in the mouse. In the current study, we provide evidence that a hemodynamic force-dependent mechanism occurs in the mouse because reduced blood flow mouse embryos exhibited a diminished or absent coverage of vSMCs around vessels, and in normal-flow embryos, extent of coverage correlated to the amount of blood flow that vessels were exposed to. We also determine that the cellular mechanism of force-induced maturation was not by promoting vSMC differentiation/proliferation, but instead involved the recruitment of vSMCs away from neighboring low-flow distal capillaries towards high-flow vessels. Finally, we hypothesize that hemodynamic force may regulate expression of specific signaling molecules to control vSMC recruitment to high-flow vessels, as reduction of flow results in the misexpression of Semaphorin 3A, 3F, 3G, and the Notch target gene Hey1, all of which are implicated in controlling vessel maturation. This study reveals another role for hemodynamic force in regulating blood vessel development of the mouse, and opens up a new model to begin elucidating mechanotransduction pathways regulating vascular maturation.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Músculo Liso Vascular/crescimento & desenvolvimento , Animais , Artérias/crescimento & desenvolvimento , Artérias/metabolismo , Vasos Sanguíneos/metabolismo , Proliferação de Células/genética , Hemodinâmica , Mecanotransdução Celular/genética , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...