Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(11): 7979-7997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515727

RESUMO

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.


Assuntos
Oryza , Solo , Solo/química , Carbono/análise , Biomarcadores Ambientais , Indicadores de Qualidade em Assistência à Saúde , Agricultura/métodos , Fertilizantes , Nitrogênio/análise
2.
J Environ Manage ; 303: 114151, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844054

RESUMO

Mangroves play a key role in ecosystem balancing and climate change mitigation. It acts as a source and sink of methane (CH4), a major greenhouse gas responsible for climate change. Energy metabolic pathways of methane production (methanogenesis) and oxidation (methanotrophy) are directly driven by sulphur (S) and nitrogen (N) metabolism and salinity in coastal wetlands. To investigate, how mangrove-degradations, affect the source-sink behaviour of CH4; the pathways of CH4, S and N were studied through whole-genome metagenomic approach. Soil samples were collected from degraded and undisturbed mangrove systems in Sundarban, India. Structural and functional microbial diversities (KEGG pathways) of CH4, S and N metabolism were analysed and correlated with labile carbon pools and physico-chemical properties of soil. Overall, the acetoclastic pathway of methanogenesis was dominant. However, the relative proportion of conversion of CO2 to CH4 was more in degraded mangroves. Methane oxidation was higher in undisturbed mangroves and the serine pathway was dominant. After serine, the ribulose monophosphate pathway of CH4 oxidation was dominant in degraded mangrove, while the xylulose monophosphate pathway was dominant in undisturbed site as it is more tolerant to salinity and higher pH. The assimilatory pathway (AMP) of S-metabolism was dominant in both systems. But in AMP pathway, adenosine triphosphate sulfurylase enzyme reads were higher in degraded mangrove, while NADPH-sulfite reductase abundance was higher in undisturbed mangrove due to higher salinity, and pH. In N-metabolism, the denitrification pathway was predominant in degraded sites, whereas the dissimilatory nitrate reduction pathway was dominant in undisturbed mangroves. The relative ratios of sulphur reducing bacteria (SRB): methanogens were higher in degraded mangrove; however, methanotrophs:methanogens was higher in undisturbed mangrove indicated lower source and greater sink capacity of CH4 in the system. Microbial manipulation in mangrove-rhizosphere for regulating major energy metabolic pathways of methane could open-up a new window of climate change mitigation in coastal wetlands.


Assuntos
Ecossistema , Metano , Dióxido de Carbono/análise , Mudança Climática , Redes e Vias Metabólicas , Nitrogênio , Solo , Enxofre , Áreas Alagadas
3.
Sci Total Environ ; 781: 146713, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784529

RESUMO

Mangrove provides significant ecosystem services, however, 40% of tropical mangrove was lost in last century due to climate change induced sea-level rise and anthropogenic activities. Sundarban-India, the largest contiguous mangrove of the world lost 10.5% of its green during 1930-2013 which primarily converted to rice-based systems. Presently degraded mangrove and adjacent rice ecology in Sundarban-India placed side by side and create typical ecology which is distinct in nature in respect to soil physicochemical properties, carbon dynamics, and microbial diversities. We investigated the structural and functional diversities of bacteria and archaea through Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene approach that drives greenhouse gases emission and carbon-pools. Remote sensing-data base were used to select the sites for collecting the soil and gas samples. The methane and nitrous oxide emissions were lower in mangrove (-0.04 mg m-2 h-1 and -52.8 µg m-2 h-1) than rice (0.26 mg m-2 h-1 and 44.7 µg m-2 h-1) due to less availability of carbon-substrates and higher sulphate availability (85.8% more than rice). The soil labile carbon-pools were more in mangrove, but lower microbial activities were noticed due to stress conditions. A unique microbial feature indicated by higher methanotrophs: methanogens (11.2), sulphur reducing bacteria (SRB): methanogens (93.2) ratios and lower functional diversity (7.5%) in mangrove than rice. These could be the key drivers of lower global warming potential (GWP) in mangrove that make it a green production system. Therefore, labile carbon build-up potential (38%) with less GWP (63%) even in degraded-mangrove makes it a clean production system than wetland-rice that has high potential to climate change mitigation. The whole genome metagenomic analysis would be the future research priority to identify the predominant enzymatic pathways which govern the methanogenesis and methanotrophy in this system.


Assuntos
Oryza , Áreas Alagadas , Agricultura , Archaea/genética , Bactérias/genética , Ecossistema , Índia , Metano/análise , Óxido Nitroso/análise , RNA Ribossômico 16S/genética , Solo
4.
Sci Total Environ ; 705: 135909, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31839306

RESUMO

Tropical mangrove represents one of the most threatened ecosystems despite their huge contribution to ecosystem services, carbon (C) sequestration and climate change mitigation. Understanding the system in light of seasonal fluctuations on greenhouse gases (GHGs) emissions due to human interferences and the tidal effect is important for devising site-specific real-time climate change mitigation strategies. In order to capture the seasonal variations, the three modes of transport of GHGs through pneumatophore, ebullition as bubbles and water-soluble diffusion was quantified. The three unique techniques for the gas collection were used to estimate the GHGs [methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)] emission, at three degraded-mangrove sites in Sundarban, India. We identified three degraded mangrove ecologies based on the remote sensing data of 1930 and 2013 (mangrove-covered area in Sundarban; 2387, 2136 km2, respectively). Samples were collected and analyzed for four seasons [winter (November-January), summer (February-April), pre-monsoon (May-June) and monsoon (July-October)], at three representative sites (Sadhupur, Dayapur, and Pakhiralaya). Monsoonal CH4 and CO2 fluxes (0.353 ± 0.026 and 64.5 ± 6.1 mmol m-2 d-1, respectively) were higher than winter and summer. However, the soil labile C pools showed the opposite trend i.e. more in summer followed by winter and monsoon. In contrast, the N2O fluxes were more during summer (54.2 ± 3.2 µmol m-2 d-1). The stagnant water had higher dissolved GHGs concentration compared to tidewater due to less salinity and a long time of stagnation. The mode of transport of GHGs through pneumatophore, ebullition, and water-soluble diffusion was also significantly varied with seasons, soil­carbon status and tidewater intrusion. Therefore, seasonal fluctuations of GHGs emission and tidal effect must be considered along with soil labile C pools for GHG-C budgeting and climate change mitigation in the mangrove ecosystem.


Assuntos
Gases de Efeito Estufa/análise , Dióxido de Carbono , Ecossistema , Monitoramento Ambiental , Efeito Estufa , Índia , Metano , Óxido Nitroso , Estações do Ano , Solo , Áreas Alagadas
5.
Sci Total Environ ; 651(Pt 1): 84-92, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223222

RESUMO

Methane (CH4) is predominantly produced in lowland rice soil, but its emission from soil to atmosphere primarily depends on passage/conduit or capillary pore spaces present in rice plants. The gas transport mechanism through aerenchyma pore spaces of rice cultivars was studied to explore the plant mediated CH4 emission. Seven rice cultivars, based on the life cycle duration (LCD), were tested in tropical eastern India. Three LCD groups were, (a) Kalinga 1 and CR Dhan 204 (LCD: 110-120 days); (b) Lalat, Pooja and CR 1014 (LCD: 130-150 days); and (c) Durga and Varshadhan (LCD: 160-170 days). Rate of CH4emission, root exudates, root oxidase activities and shoot aerenchyma pore spaces were analyzed to study the mechanism of plant mediated emission from rice. Aerenchyma pore space was quantified in the hypothesis that it regulates the CH4 transportation from soil to atmosphere. The ratio of pore space area to total space was lowest in Kalinga 1 cultivar (0.29) and highest was in Varshadhan (0.43). Significant variations in the methane emission were observed among the cultivars with an average emission rate ranged from 0.86 mg m-2 h-1 to 4.96 mg m-2 h-1. The CH4 emission rates were lowest in short duration cultivars followed by medium and long duration ones. The greenhouse gas intensity considering average CH4 emission rate per unit grain yield was also lowest (0.35) in Kalinga 1 and relatively less in short and medium duration cultivars. Root exudation was higher at panicle initiation (PI) than maximum tillering (MT) stage. Lowest exudation was noticed in (197.2 mg C plant-1 day-1) Kalinga 1 and highest in Varsadhan (231.7 mg C plant-1 day-1). So we can say, the rate of CH4 emission was controlled by aerenchyma orientation, root exudation and biomass production rate which are the key specific traits of a cultivar. Identified traits were closely associated with duration and adaptability to cultivars grown in specific ecology. Therefore, there is possibility to breed rice cultivars depending on ecology, duration and having less CH4 emission potential, which could be effectively used in greenhouse gas mitigation strategies.


Assuntos
Poluentes Atmosféricos/metabolismo , Metano/metabolismo , Oryza/metabolismo , Índia , Oryza/anatomia & histologia , Oryza/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...