Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(2): 757-769, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35182267

RESUMO

DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase, and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson's disease remains elusive. Here, using a comparative proteomic analysis between wild-type cortical neurons and neurons lacking DJ-1 (data available via ProteomeXchange, identifier PXD029351), we show that this protein is involved in cell cycle checkpoints disruption. We detect increased amount of p-tau and α-synuclein proteins, altered phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signalling pathways, and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation, and the establishment of synapses, but can also contribute to cell cycle progression in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1-associated PD. Therefore, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.


Assuntos
Doença de Parkinson , Humanos , Ciclo Celular , Quinase 5 Dependente de Ciclina , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases , Proteômica , Proteína Desglicase DJ-1/metabolismo
2.
Redox Biol ; 37: 101737, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035814

RESUMO

Peroxiredoxin 6 (PRDX6) has been associated with tumor progression and cancer metastasis. Its acting on phospholipid hydroperoxides and its phospholipase-A2 activity are unique among the peroxiredoxin family and add complexity to its action mechanisms. As a first step towards the study of PRDX6 involvement in cancer, we have constructed a human hepatocarcinoma HepG2PRDX6-/- cell line using the CRISPR/Cas9 technique and have characterized the cellular response to lack of PRDX6. Applying quantitative global and redox proteomics, flow cytometry, in vivo extracellular flow analysis, Western blot and electron microscopy, we have detected diminished respiratory capacity, downregulation of mitochondrial proteins and altered mitochondrial morphology. Autophagic vesicles were abundant while the unfolded protein response (UPR), HIF1A and NRF2 transcription factors were not activated, despite increased levels of p62/SQSTM1 and reactive oxygen species (ROS). Insulin receptor (INSR), 3-phosphoinositide-dependent protein kinase 1 (PDPK1), uptake of glucose and hexokinase-2 (HK2) decreased markedly while nucleotide biosynthesis, lipogenesis and synthesis of long chain polyunsaturated fatty acids (LC-PUFA) increased. 254 Cys-peptides belonging to 202 proteins underwent significant redox changes. PRDX6 knockout had an antiproliferative effect due to cell cycle arrest at G2/M transition, without signs of apoptosis. Loss of PLA2 may affect the levels of specific lipids altering lipid signaling pathways, while loss of peroxidase activity could induce redox changes at critical sensitive cysteine residues in key proteins. Oxidation of specific cysteines in Proliferating Cell Nuclear Antigen (PCNA) could interfere with entry into mitosis. The GSH/Glutaredoxin system was downregulated likely contributing to these redox changes. Altogether the data demonstrate that loss of PRDX6 slows down cell division and alters metabolism and mitochondrial function, so that cell survival depends on glycolysis to lactate for ATP production and on AMPK-independent autophagy to obtain building blocks for biosynthesis. PRDX6 is an important link in the chain of elements connecting redox homeostasis and proliferation.


Assuntos
Pontos de Checagem do Ciclo Celular , Mitocôndrias , Peroxirredoxina VI , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...