Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39250191

RESUMO

PURPOSE: Investigations into the correction of presbyopia have considered lens design, clinical implications and the development of objective metrics such as the visual Strehl ratio. This study investigated the Jacobi-Fourier phase mask as an ophthalmic element in the correction of presbyopia. The goal was to develop a contact or intraocular lens whose performance was largely insensitive to changes in pupil diameter. METHODS: Numerical simulations based on Fourier optics were performed to evaluate three different Jacobi-Fourier polynomials, with the aim of providing a range of clear vision (1 Dioptre (D)). Performance was evaluated for three pupil sizes (6, 4 and 2 mm), while polychromatic images were simulated using three different wavelengths (656.3, 587.6 and 486.1 nm). The Neural Transfer function was included in the simulation. To validate the method and results, we used the Visual Strehl combined objective metric (VSCombined) currently used in visual optics. This metric gives more weight to the phase transfer function and is more suitable for non-symmetrical phase functions. RESULTS: Numerical validation showed the suitability of the Jacobi-Fourier phase masks for extending the range of clear vision of presbyopic eyes, providing a visual acuity of at least 0.10 logMAR (6/7.5 Snellen) at all distances between 1 and 6 m. The results show a range of clear vision of 1D was not affected by changes in pupil size, an increase in retinal image contrast accompanied by image artefact reduction by increasing the radial order of the Jacobi-Fourier phase mask and a reduction of wavelength dependence of the retinal images. These results are supported by simulated images and the objective criterion VSCombined. CONCLUSIONS: The use of Jacobi-Fourier phase masks as ophthalmic elements for presbyopic correction show promising results, with a good range of clear vision and reduced dependence on pupil size and chromatic aberration.

2.
Sensors (Basel) ; 21(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833827

RESUMO

Infrared Thermography (IRT) is a non-contact, non-intrusive, and non-ionizing radiation tool used for detecting breast lesions. This paper analyzes the surface temperature distribution (STD) on an optimal Region of Interest (RoI) for extraction of suitable internal heat source parameters. The physiological parameters are estimated through the inverse solution of the bio-heat equation and the STD of suspicious areas related to the hottest spots of the RoI. To reach these values, the STD is analyzed by means: the Depth-Intensity-Radius (D-I-R) measurement model and the fitting method of Lorentz curve. A highly discriminative pattern vector composed of the extracted physiological parameters is proposed to classify normal and abnormal breast thermograms. A well-defined RoI is delimited at a radial distance, determined by the Support Vector Machines (SVM). Nevertheless, this distance is less than or equal to 1.8 cm due to the maximum temperature location close to the boundary image. The methodology is applied to 87 breast thermograms that belong to the Database for Mastology Research with Infrared Image (DMR-IR). This methodology does not apply any image enhancements or normalization of input data. At an optimal position, the three-dimensional scattergrams show a correct separation between normal and abnormal thermograms. In other cases, the feature vectors are highly correlated. According to our experimental results, the proposed pattern vector extracted at optimal position a=1.6 cm reaches the highest sensitivity, specificity, and accuracy. Even more, the proposed technique utilizes a reduced number of physiological parameters to obtain a Correct Rate Classification (CRC) of 100%. The precision assessment confirms the performance superiority of the proposed method compared with other techniques for the breast thermogram classification of the DMR-IR.


Assuntos
Neoplasias da Mama , Termografia , Neoplasias da Mama/diagnóstico por imagem , Feminino , Temperatura Alta , Humanos , Aumento da Imagem , Máquina de Vetores de Suporte , Temperatura
3.
J Med Imaging (Bellingham) ; 3(1): 014004, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27014716

RESUMO

A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters [Formula: see text] and [Formula: see text] of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented.

4.
Sensors (Basel) ; 14(10): 18701-10, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25302813

RESUMO

This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA