Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vet World ; 12(9): 1422-1427, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31749576

RESUMO

BACKGROUND AND AIM: Canine parvovirus (CPV) is the most important viral cause of enteritis and mortality in pups. Evaluation and monitoring of pre- and post-vaccine immune responses may help to determine the efficacy of the current vaccination schedule being followed in pups in India. This study aimed to evaluate and monitor the pre- and post-vaccine immune responses of CPV vaccinated pups using hemagglutination inhibition (HI) assay. The neutralizing antibody titer levels were also detected using serum neutralization test (SNT). MATERIALS AND METHODS: The pups were categorized into two groups, the double booster and the single booster groups. In this study, serum samples were subjected to HI and SNT for measuring the CPV antibody titer at frequent intervals for up to 6 months from 27 healthy pups following primary and booster CPV vaccinations. RESULTS: The antibody titers in double booster pups reached their peaks at the 21st day after the second booster vaccination with a geometric mean (GM) of 3.57. The antibody titers in single booster pups reached their peaks at the 21st day after the first booster vaccination with a lower GM of 3.18. CONCLUSION: The double booster pups maintained a higher immune response throughout the period of the study compared to single booster pups though the difference in titers was not statistically significant. SNT results indicated that the raised antibody titer was also able to yield virus-neutralizing antibodies. No interfering maternally derived antibodies were found in the pups at the age of primary vaccination (45th day) in our study. Therefore, the second booster vaccination may be useful in maintaining the protective titer for a prolonged period.

2.
Vet World ; 9(7): 705-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27536030

RESUMO

AIM: The present study was undertaken to characterize the mutation in gyrA (DNA gyrase) and parC (topoisomerase IV) genes responsible for fluoroquinolone resistance in Escherichia coli isolates associated with the bovine mastitis. MATERIALS AND METHODS: A total of 92 milk samples from bovine mastitis cases were sampled in and around Puducherry (Southern India). Among these samples, 30 isolates were bacteriologically characterized as E. coli. Minimum inhibitory concentrations (MIC) of fluoroquinolones of these 30 E. coli isolates were evaluated by resazurin microtiter assay. Then, the quinolone resistance determining region (QRDR) (gyrA and parC genes) of these E. coli isolates was genetically analyzed for determining the chromosomal mutation causing fluoroquinolone resistance. RESULTS: E. coli isolates showed a resistance rate of 63.33%, 23.33% and 30.03% to nalidixic acid, ciprofloxacin and enrofloxacin, respectively. Mutations were found at 83(rd) and 87(th) amino acid position of gyrA gene, and at 80(th) and 108(th) amino acid position of parC gene in our study isolates. Among these five isolates, one had a single mutation at 83 amino acid position of gyrA with reduced susceptibility (0.5 µg/ml) to ciprofloxacin. Then, in remaining four isolates, three isolates showed triple mutation (at gyrA: S83⟶L and D87⟶N; at parC: S80⟶I) and the fifth isolate showed an additional mutation at codon 108 of parC (A108⟶T) with the increased ciprofloxacin MIC of 16-128 µg/ml. The most common mutation noticed were at S83⟶L and D87⟶N of gyrA and S80⟶I of ParC. CONCLUSION: The study confirms the presence of mutation/s responsible for fluoroquinolone resistance in QRDR of gyrA and parC genes of E. coli isolates of animal origin, and there is increased rate of fluoroquinolone resistance with high-level of MIC. The mutations observed in this study were similar to that of human isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...