Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161648

RESUMO

Small differences in turn cycle structure, invisible to the naked eye, could be decisive in improving descent performance. The aim of this study was to assess the influence of turn cycle structure on the performance of elite alpine skiers using an inertial measurement unit (IMU) in different slalom (SL) course settings. Four SL courses were set: a flat-turned (FT), a steep-turned (ST), a flat-straighter (FS) and a steep-straighter (SS). Five elite alpine skiers (21.2 ± 3.3 years, 180.2 ± 5.6 cm, 72.8 ± 6.6 kg) completed several runs at maximum speed for each SL course. A total of 77 runs were obtained. Fast total times correlate with a longer initiation (INI) time in FT, a shorter steering time out of the turn (STEOUT) in the FT and FS and a shorter total steering time (STEIN+OUT) in the FT and SS courses. The linear mixed model used for the analysis revealed that in the FT-course for each second increase in the INI time, the total time is reduced by 0.45 s, and for every one-second increase in the STEOUT and STEIN+OUT times, the total time increases by 0.48 s and 0.31 s, respectively. Thus, to enhance descent performance, the skier should lengthen the INI time and shorten the STEOUT and STEIN+OUT time. Future studies could use an IMU to detect turn phases and analyze them using the other built-in sensors.


Assuntos
Esqui , Fenômenos Biomecânicos , Cognição
2.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502664

RESUMO

Inertial measurement units (IMUs) represent a technology that is booming in sports right now. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically to evaluate a magnet-based timing system (M-BTS) for timing short-duration sports actions using the magnetometer built into an IMU in different sporting contexts. Forty-eight athletes (22.7 ± 3.3 years, 72.2 ± 10.3 kg, 176.9 ± 8.5 cm) and eight skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg) performed a 60-m linear sprint running test and a ski slalom, respectively. The M-BTS consisted of placing several magnets along the course in both contexts. The magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. The time between peaks was calculated. The system was validated with photocells. The 95% error intervals for the total times were less than 0.077 s for the running test and 0.050 s for the ski slalom. With the M-BTS, future studies could select and cut the signals belonging to the other sensors that are integrated in the IMU, such as the accelerometer and the gyroscope.


Assuntos
Atletas , Imãs , Humanos
3.
PLoS One ; 14(6): e0216448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166989

RESUMO

An objective analysis of the human movement can help both clinical assessment and sports performance. Kinovea is a free 2D motion analysis software that can be used to measure kinematic parameters. This low-cost technology has been used in sports sciences, as well as in the clinical and research fields. One interesting tool is that it can measure an object (or person) passing in front of the camera, taking into account the perspective between the camera and the recorded object. Although it has been validated as a tool to assess time-related variables, few studies assessed its validity compared to a Gold Standard; furthermore, its reliability in different perspectives has not been previously assessed. The main objective of this study is to determine the validity of the Kinovea software compared to AutoCAD, and its intra and inter-rater reliability in obtaining coordinates data; a second objective is to compare their results at 4 different perspectives (90°, 75°, 60° and 45°) and to assess the inter and intra rater reliability at each perspective. For this purpose, a wire structure figure in the shape of a human lower limb was designed and measured in AutoCAD; it was then recorded during a pendular motion with a video-camera placed at distance of 5 m and analyzed with Kinovea in the 4 perspectives (90°, 75°, 60° and 45°). Each frame was examined by three observers who made two attempts. A multiple approach was applied involving the analysis of the systematic error, with a two-way ANOVA 2x4; the relative reliability with Intraclass Correlation Coefficient (ICC) and the Coefficient of Variance (CV) (95% confidence interval); and the absolute reliability with the Standard Error (SE). The results indicate that the Kinovea software is a valid and reliable tool that is able to measure accurately at distances up to 5 m from the object and at an angle range of 90°-45°. Nevertheless, for optimum results an angle of 90° is suggested.


Assuntos
Movimento , Software , Fenômenos Biomecânicos , Marcha , Humanos , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...