Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 275: 120896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34090049

RESUMO

Microbubbles (MB) are used as ultrasound (US) contrast agents and can be efficiently targeted against markers of angiogenesis and inflammation. Due to their gas core, MB locally alter susceptibilities in magnetic resonance imaging (MRI), but unfortunately, the resulting contrast is low and not sufficient to generate powerful molecular MRI probes. Therefore, we investigated whether a potent molecular MR agent can be generated by encapsulating superparamagnetic iron oxide nanoparticles (SPION) in the polymeric shell of poly (n-butylcyanoacrylate) (PBCA) MB and targeted them against αvß3 integrins on the angiogenic vasculature of 4T1 murine breast carcinomas. SPION-MB consist of an air core and a multi-layered polymeric shell enabling efficient entrapment of SPION. The mean size of SPION-MB was 1.61 ± 0.32 µm. Biotin-streptavidin coupling was employed to functionalize the SPION-MB with cyclic RGDfK (Arg-Gly-Asp) and RADfK (Arg-Ala-Asp) peptides. Cells incubated with RGD-SPION-MB showed enhanced transverse relaxation rates compared with SPION-MB and blocking αvß3 integrin receptors with excess free cRGDfK significantly reduced RGD-SPION-MB binding. Due to the fast binding of RGD-SPION-MB in vivo, dynamic susceptibility contrast MRI was employed to track their retention in tumors in real-time. Higher retention of RGD-SPION-MB was observed compared with SPION-MB and RAD-SPION-MB. To corroborate our MRI results, molecular US was performed the following day using the destruction-replenishment method. Both imaging modalities consistently indicated higher retention of RGD-SPION-MB in angiogenic vessels compared with SPION-MB and RAD-SPION-MB. Competitive blocking experiments in mice further confirmed that the binding of RGD-SPION-MB to αvß3 integrin receptors is specific. Overall, this study demonstrates that RGD-SPION-MB can be employed as molecular MR/US contrast agents and are capable of assessing the αvß3 integrin expression in the neovasculature of malignant tumors.


Assuntos
Microbolhas , Neoplasias , Animais , Integrina alfaV , Integrina alfaVbeta3 , Imageamento por Ressonância Magnética , Camundongos , Ultrassonografia
3.
Biomaterials ; 216: 119228, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195299

RESUMO

The modification of biomaterials to comply with clinically employed monitoring techniques is a promising strategy to support clinical translation in regenerative medicine. Here, multimodal imaging of tissue-engineered vascular grafts (TEVG) was enabled by functionalizing the textile scaffold with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The resulting MR-imageable grafts (iTEVG) were monitored non-invasively throughout their whole life-cycle, from initial quality control to longitudinal functional evaluation in an ovine model for up to 8 weeks. Crucial features such as the complete embedding of the textile mesh in the developing tissue and the grafts' structural stability were assessed in vitro using 1T-, 3T- and 7T-MRI scanners. In vivo, the grafts were imaged by 3T-MRI and PET-CT. Contrary to unlabeled constructs, iTEVG could be delineated from native arteries and precisely localized by MRI. USPIO labeling neither induced calcifications, nor negatively affected their remodeling with respect to tissue-specific extracellular matrix composition and endothelialization. Functionality was confirmed by MR-angiography. 18F-FDG uptake (assessed via PET-CT) indicated only transient post-surgical inflammation. In conclusion, USPIO-labeling enables accurate localization of TEVG and opens up opportunities for multimodal imaging approaches to assess transplant acceptance and function. Thereby, it can support clinical decision-making on the need for further pharmacological or surgical interventions.


Assuntos
Prótese Vascular , Artérias Carótidas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Meios de Contraste/análise , Dextranos/análise , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Ovinos
4.
Artigo em Inglês | MEDLINE | ID: mdl-27800665

RESUMO

Contrast agents (CA) are routinely used in clinical practice to improve the diagnosis of diseases and to monitor therapy response. The majority of CA comprises small molecules accumulating at pathological sites due to vascular abnormalities, such as changes in perfusion and permeability. For many diseases, high diagnostic accuracy can be achieved with contrast-enhanced imaging. This means that new CA will only succeed in translation if they either show superior performance with respect to diagnostic accuracy, safety and cost, support a new imaging modality, or are directly linked to the refinement of therapy, e.g., as a companion diagnostic. Unfortunately, these basic demands are often not carefully considered by the scientific community, leading to concepts with low chances of clinical translation. Thus, it is not surprising that, despite steadily increasing numbers of publications, there is quite the opposite trend when it comes to the clinical approval of new diagnostics. As a matter of fact, except for PET tracers, in the last decade, only a handful of CA received FDA or EMA approval. Furthermore, several approved products were discontinued by the manufacturers because of low market potential, a competitive own product, suboptimal clinical performance, or safety concerns. This review article discusses the current status of approved diagnostic probes for clinical imaging modalities, with a focus on new trends in CA development. In this context, molecularly targeted diagnostics or probes for emerging fields, such as image-guided surgery, nanomedicine, or theranostics, will be introduced and discussed with regard to their clinical translation. WIREs Nanomed Nanobiotechnol 2017, 9:e1441. doi: 10.1002/wnan.1441 For further resources related to this article, please visit the WIREs website.


Assuntos
Meios de Contraste/química , Nanomedicina Teranóstica , Humanos , Nanomedicina , Cirurgia Assistida por Computador
5.
Front Pharmacol ; 6: 197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441654

RESUMO

Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...