Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27450-27462, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38751205

RESUMO

The long-term stability of perovskite solar cells (PSCs) remains a bottleneck for commercialization. While studies on the stoichiometry and morphology of PSCs with regard to performance are prevalent, understanding the influence of these factors on their long-term stability is lacking. In this work, we evaluate the impact of stoichiometry and morphology on the long-term stability of cesium formamidinium-based PSCs. We demonstrate that the lead iodide (PbI2) to formamidinium iodide (FAI) ratio influences stability under various stress factors (elevated temperature and light). A high molar ratio (PbI2/FAI > 1.1) in the perovskite precursor displays drastic degradation under ISOS-L1 (100 mW/cm2, 25 °C, maximum power point tracking) conditions. However, postdegradation analysis contradicts these results. Devices with PbI2/FAI ≤ 1.1 are stable under light, but intermittent current density-voltage characterizations indicate that device performance decreases during storage in the dark. Migration of iodide (I-) ions to the electron-transport layer (ETL) and iodine vacancies (VI-+) to the hole-transport layer (HTL) forms localized shunts in the absorber layer. Pinhole formation, surrounded by FA+-rich regions, explains the extent of damage in comparably aged films. In summary, this work emphasizes the importance of reporting stability under different stress conditions, coupled with postdegradation and dark recovery analyses of PSCs to better understand the complexities of perovskite instability under real-life conditions such as expected during outdoor operation.

2.
Energy Environ Sci ; 17(8): 2800-2814, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38659971

RESUMO

The recent tremendous progress in monolithic perovskite-based double-junction solar cells is just the start of a new era of ultra-high-efficiency multi-junction photovoltaics. We report on triple-junction perovskite-perovskite-silicon solar cells with a record power conversion efficiency of 24.4%. Optimizing the light management of each perovskite sub-cell (∼1.84 and ∼1.52 eV for top and middle cells, respectively), we maximize the current generation up to 11.6 mA cm-2. Key to this achievement was our development of a high-performance middle perovskite sub-cell, employing a stable pure-α-phase high-quality formamidinium lead iodide perovskite thin film (free of wrinkles, cracks, and pinholes). This enables a high open-circuit voltage of 2.84 V in a triple junction. Non-encapsulated triple-junction devices retain up to 96.6% of their initial efficiency if stored in the dark at 85 °C for 1081 h.

3.
Nat Commun ; 15(1): 3372, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643198

RESUMO

Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision. Here, we demonstrate that these requirements can be fulfilled by inkjet printing. This versatile technology offers a high degree of freedom in manufacturing, as well as cost-affordable and rapid-prototyping features from the micron to the meter scale. In this work, via rational ink design and formulation, OIFs were fully inkjet printed in ambient conditions. Longpass, shortpass, bandpass, and dichroic OIFs were fabricated, and precise control of the spectral response in OIFs was realized. Subsequently, customized lateral patterning of OIFs by inkjet printing was achieved. Furthermore, upscaling of the printed OIFs to A4 size (29.7 × 21.0 cm²) was demonstrated.

4.
Adv Sci (Weinh) ; 11(14): e2308901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308172

RESUMO

Hybrid perovskite photovoltaics (PVs) promise cost-effective fabrication with large-scale solution-based manufacturing processes as well as high power conversion efficiencies. Almost all of today's high-performance solution-processed perovskite absorber films rely on so-called quenching techniques that rapidly increase supersaturation to induce a prompt crystallization. However, to date, there are no metrics for comparing results obtained with different quenching methods. In response, the first quantitative modeling framework for gas quenching, anti-solvent quenching, and vacuum quenching is developed herein. Based on dynamic thickness measurements in a vacuum chamber, previous works on drying dynamics, and commonly known material properties, a detailed analysis of mass transfer dynamics is performed for each quenching technique. The derived models are delivered along with an open-source software framework that is modular and extensible. Thereby, a deep understanding of the impact of each process parameter on mass transfer dynamics is provided. Moreover, the supersaturation rate at critical concentration is proposed as a decisive benchmark of quenching effectiveness, yielding ≈ 10-3 - 10-1s-1 for vacuum quenching, ≈ 10-5 - 10-3s-1 for static gas quenching, ≈ 10-2 - 100s-1 for dynamic gas quenching and ≈ 102s-1 for antisolvent quenching. This benchmark fosters transferability and scalability of hybrid perovskite fabrication, transforming the "art of device making" to well-defined process engineering.

5.
Adv Mater ; 36(7): e2307160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904613

RESUMO

Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37906716

RESUMO

Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen. The accurately deposited solution thin film on the substrate is recorded by a tilted CCD camera, allowing for in situ monitoring of the perovskite thin film formation. With the tracking of crystallization dynamics during the drying process, we identify the critical process parameters needed for the design of optimal drying and gas quenching systems. In addition, defining different drying regimes, we derive practical slot jet adjustments preventing gas backflow and demonstrate large-area, homogeneous, and pinhole-free slot-die coated perovskite thin films that result in solar cells with PCEs of up to 18.6%. Our study reveals key interrelations of process parameters, e.g., the gas flow and drying velocity, and the exact crystallization position with the morphology formation of fabricated thin films, resulting in a homogeneous performance of corresponding 50 × 50 mm2 solar minimodules (17.2%) with only minimal upscaling loss. In addition, we validate a previously developed model on the drying dynamics of perovskite thin films on small-area slot-die coated areas of ≥100 cm2. The study provides methodical guidelines for the design of future slot-die coating setups and establishes a step forward to a successful transfer of solution processes towards industrial-scale deposition systems beyond brute force optimization.

7.
Sci Adv ; 9(35): eadh5083, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656792

RESUMO

Hybrid perovskite semiconductor materials are predicted to lock chirality into place and encode asymmetry into their electronic states, while softness of their crystal lattice accommodates lattice strain to maintain high crystal quality with low defect densities, necessary for high luminescence yields. We report photoluminescence quantum efficiencies as high as 39% and degrees of circularly polarized photoluminescence of up to 52%, at room temperature, in the chiral layered hybrid lead-halide perovskites (R/S/Rac)-3BrMBA2PbI4 [3BrMBA = 1-(3-bromphenyl)-ethylamine]. Using transient chiroptical spectroscopy, we explain the excellent photoluminescence yields from suppression of nonradiative loss channels and high rates of radiative recombination. We further find that photoexcitations show polarization lifetimes that exceed the time scales of radiative decays, which rationalize the high degrees of polarized luminescence. Our findings pave the way toward high-performance solution-processed photonic systems for chiroptical applications and chiral-spintronic logic at room temperature.

8.
Nano Lett ; 23(5): 1637-1644, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852434

RESUMO

Perovskite gain materials can sustain continuous-wave lasing at room-temperature. A first step toward the unachieved goal of electrically excited lasing would be an improvement in gain when electrical stimulation is added to the optical. However, to date, electrical stimulation supplementing optical has reduced gain performance. We find that amplified spontaneous emission (ASE) in a CsPbBr3 perovskite light-emitting diode (LED) held under invariant subthreshold optical excitation can be turned on/off by the addition/removal of an electric field. A positive bias voltage leads to a factor of 3 reduction in the optical ASE threshold, the cause of which can be attributed to an enhancement of the radiative rate. The slow components (10 s time scale) of the modulation in the photoluminescence and ASE when the voltage is changed suggest that the relocation of mobile ions trigger the increased radiative rate and observed lowering of ASE thresholds.

9.
ACS Energy Lett ; 7(7): 2273-2281, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35844471

RESUMO

Monolithic two-terminal (2T) perovskite/CuInSe2 (CIS) tandem solar cells (TSCs) combine the promise of an efficient tandem photovoltaic (PV) technology with the simplicity of an all-thin-film device architecture that is compatible with flexible and lightweight PV. In this work, we present the first-ever 2T perovskite/CIS TSC with a power conversion efficiency (PCE) approaching 25% (23.5% certified, area 0.5 cm2). The relatively planar surface profile and narrow band gap (∼1.03 eV) of our CIS bottom cell allow us to exploit the optoelectronic properties and photostability of a low-Br-containing perovskite top cell as revealed by advanced characterization techniques. Current matching was attained by proper tuning of the thickness and bandgap of the perovskite, along with the optimization of an antireflective coating for improved light in-coupling. Our study sets the baseline for fabricating efficient perovskite/CIS TSCs, paving the way for future developments that might push the efficiencies to over 30%.

10.
Opt Express ; 30(9): 14172-14188, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473167

RESUMO

Recent advances in solution processing of micrometer-thick perovskite solar cells over textured silicon bottom solar cells allowed a new promising approach for the fabrication of 2T perovskite/silicon tandem photovoltaics, combining optimal light management in the textured bottom cell with the ease of solution processing. Detailed simulations are needed to assess the performances of this morphology configuration (thick perovskite configuration). In this work, in-depth optical and energy yield (EY) simulations are performed to compare the thick perovskite configuration with other relevant morphology configurations for 2T perovskite/silicon tandem photovoltaics. Under standard test conditions, the total photogenerated current of the thick perovskite configuration is 1.3 mA cm-2 lower (-3.4% relative) than the one of the conformal perovskite on textured silicon configuration for non-encapsulated cells and only 0.8 mA cm-2 (-2.1% relative) for encapsulated cells. Under realistic outdoor conditions, EY modelling for a wide range of locations shows that, while conformal perovskite on textured silicon configuration remains the optimal configuration, thick perovskite configuration exhibits a mere ∼2.5% lower annual EY. Finally, intermediate scenarios are investigated with the angle of the perovskite front-side texture differing from the silicon texture and critical angles for efficient light management in these configurations are identified.

11.
ACS Appl Mater Interfaces ; 14(9): 11300-11312, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195981

RESUMO

Hybrid perovskite photovoltaics combine high performance with the ease of solution processing. However, to date, a poor understanding of morphology formation in coated perovskite precursor thin films casts doubt on the feasibility of scaling-up laboratory-scale solution processes. Oblique slot jet drying is a widely used scalable method to induce fast crystallization in perovskite thin films, but deep knowledge and explicit guidance on how to control this dynamic method are missing. In response, we present a quantitative model of the drying dynamics under oblique slot jets. Using this model, we identify a simple criterion for successful scaling of perovskite solution printing and predict coating windows in terms of air velocity and web speed for reproducible fabrication of perovskite solar cells of ∼15% in power conversion efficiency─in direct correlation with the morphology of fabricated thin films. These findings are a corner stone toward scaling perovskite fabrication from simple principles instead of trial and error optimization.

12.
J Phys Chem Lett ; 13(2): 552-558, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35007079

RESUMO

Defect states are known to trigger trap-assisted nonradiative recombination, restricting the performance of perovskite solar cells (PSCs). Here, we investigate the trap states in long-term thermally stressed methylammonium lead iodide (MAPbI3) perovskite thin films over 500 h at 85 °C employing thermally stimulated current measurements. A prominent deep trap level was detected with an activation energy of ∼0.459 eV in MAPbI3 without being thermally stressed. Interestingly, upon the application of thermal stress, an additional deep trap level of activation energy ∼0.414 eV emerges and grows with thermal stress duration. After 500 h of thermal stress, the trap density was ∼1016 cm-3. The trend of open-circuit voltage loss was in line with the trap density variation with thermal stress time, which elucidates the enhanced nonradiative recombination through these trap states. This work opens a path to understanding the mechanism behind long-term thermal instability and further inspires the development of strategies to minimize trap formation in PSCs.

13.
Opt Express ; 29(21): 34494-34509, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809238

RESUMO

While various nanophotonic structures applicable to relatively thin crystalline silicon-based solar cells were proposed to ensure effective light in-coupling and light trapping in the absorber, it is of great importance to evaluate their performance on the solar module level under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively thin (crystalline silicon (c-Si) wafer thickness between 5 µm and 80 µm) heterojunction (HJT) solar module architectures when optimized anti-reflective and light trapping titanium dioxide (TiO2) nanodisk square arrays are applied on the front and rear cell interfaces, respectively. Our numerical study shows that upon reducing c-Si wafer thickness down to 5 µm, the relative increase of the annual energy yield can go up to 23.3 %rel and 43.0 %rel for mono- and bifacial solar modules, respectively, when compared to the reference modules with flat optimized anti-reflective coatings of HJT solar cells.

14.
ACS Appl Mater Interfaces ; 13(46): 54874-54883, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34723477

RESUMO

Lanthanide-based upconversion (UC) allows harvesting sub-bandgap near-infrared photons in photovoltaics. In this work, we investigate UC in perovskite solar cells by implementing UC single crystal BaF2:Yb3+, Er3+ at the rear of the solar cell. Upon illumination with high-intensity sub-bandgap photons at 980 nm, the BaF2:Yb3+, Er3+ crystal emits upconverted photons in the spectral range between 520 and 700 nm. When tested under terrestrial sunlight representing one sun above the perovskite's bandgap and sub-bandgap illumination at 980 nm, upconverted photons contribute a 0.38 mA/cm2 enhancement in the short-circuit current density at lower intensity. The current enhancement scales non-linearly with the incident intensity of sub-bandgap illumination, and at higher intensity, 2.09 mA/cm2 enhancement in current was observed. Hence, our study shows that using a fluoride single crystal like BaF2:Yb3+, Er3+ for UC is a suitable method to extend the response of perovskite solar cells to near-infrared illumination at 980 nm with a subsequent enhancement in current for very high incident intensity.

15.
ACS Appl Mater Interfaces ; 13(39): 46488-46498, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34551256

RESUMO

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential. This study addresses this challenge in two ways (1) removing the hole-transport layer (HTL) and (2) implementing highly transparent hydrogen-doped indium oxide In2O3:H (IO:H) electrodes instead of the commonly used indium tin oxide (ITO). Removing HTL reduces parasitic absorption loss in shorter wavelengths without compromising the photovoltaic performance. IO:H, with an ultra-low near-infrared optical loss and a high charge carrier mobility, results in a remarkable increase in the photocurrent of the semitransparent top and (HTL-free) NBG bottom perovskite solar cells when substituted for ITO. As a result, an IO:H-based four-terminal all-perovskite tandem solar cell (4T all-PTSCs) with a power conversion efficiency (PCE) as high as 24.8% is demonstrated, outperforming ITO-based 4T all-PTSCs with PCE up to 23.3%.

16.
ACS Appl Mater Interfaces ; 13(13): 15292-15304, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764733

RESUMO

One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.

17.
J Phys Chem Lett ; 12(9): 2293-2298, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651626

RESUMO

Recently, continuous-wave (CW) lasing was demonstrated at room temperature in quasi-2D perovskites. For 3D films, CW lasing at room temperature remains challenging. Issues hampering 3D materials include the temperature dependence of the (a) distribution of carrier energies, (b) buildup of photoinduced nonradiative channels, and (c) rates of bimolecular versus Auger recombination. We study the latter in a phase-stable 3D perovskite using high-index substrates to completely suppress amplified spontaneous emission (ASE). The bimolecular recombination coefficient decreases from 80 to 290 K (from (6.4 to 1.1) × 10-10 cm-3 s-1), whereas the Auger coefficient stays constant at 3 × 10-29 cm-6 s-1. Above 250 K, the Auger rate exceeds the bimolecular rate at carrier densities corresponding to the ASE threshold. At lower temperatures, the decrease in the bimolecular rate coefficient with increasing temperature and the fraction of photoluminescence in the ASE band determine the temperature dependence of the ASE threshold.

18.
ACS Appl Mater Interfaces ; 13(2): 2642-2653, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405505

RESUMO

Hybrid organic-inorganic perovskites are highly promising candidates for the upcoming generation of single- and multijunction solar cells. Despite their extraordinarily good semiconducting properties, there is a need to increase the intrinsic material stability against heat, moisture, and light exposure. Understanding how variations in synthesis affect the bulk and surface stability is therefore of paramount importance to achieve a rapid commercialization on large scales. In this work, we show for the case of methylammonium lead iodide that a thorough control of the methylammonium iodide (MAI) partial pressure during co-evaporation is essential to limit photostriction and reach phase purity, which dictate the absorber stability. Kelvin probe force microscopy measurements in ultrahigh vacuum corroborate that off-stoichiometric absorbers prepared with an excess of MAI partial pressure exhibit traces of low-dimensional (two-dimensional, 2D) perovskites and stacking faults that have adverse effects on the intrinsic material stability. Under optimized growth conditions, time-resolved photoluminescence and work functions mapping corroborate that the perovskite films are less prone to heat and light degradation.

19.
Opt Express ; 28(25): 37986-37995, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379621

RESUMO

A limiting factor in organic solar cells (OSCs) is the incomplete absorption in the thin absorber layer. One concept to enhance absorption is to apply an optical cavity design. In this study, the performance of an OSC with cavity is evaluated. By means of a comprehensive energy yield (EY) model, the improvement is demonstrated by applying realistic sky irradiance, covering a wide range of incidence angles. The relative enhancement in EY for different locations is found to be 11-14% compared to the reference device with an indium tin oxide front electrode. The study highlights the improved angular light absorption as well as the angular robustness of an OSC with cavity.

20.
Opt Express ; 28(6): 8878-8897, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225505

RESUMO

The rise in the power conversion efficiency (PCE) of perovskite solar cells has triggered enormous interest in perovskite-based tandem photovoltaics. One key challenge is to achieve high transmission of low energy photons into the bottom cell. Here, nanostructured front electrodes for 4-terminal perovskite/crystalline-silicon (perovskite/c-Si) tandem solar cells are developed by conformal deposition of indium tin oxide (ITO) on self-assembled polystyrene nanopillars. The nanostructured ITO is optimized for reduced reflection and increased transmission with a tradeoff in increased sheet resistance. In the optimum case, the nanostructured ITO electrodes enhance the transmittance by ∼7% (relative) compared to planar references. Perovskite/c-Si tandem devices with nanostructured ITO exhibit enhanced short-circuit current density (2.9 mA/cm2 absolute) and PCE (1.7% absolute) in the bottom c-Si solar cell compared to the reference. The improved light in-coupling is more pronounced for elevated angle of incidence. Energy yield enhancement up to ∼10% (relative) is achieved for perovskite/c-Si tandem architecture with the nanostructured ITO electrodes. It is also shown that these nanostructured ITO electrodes are also compatible with various other perovskite-based tandem architectures and bear the potential to improve the PCE up to 27.0%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...