Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611182

RESUMO

Two polyurethanes (PUs) were similarly synthesized by reacting a cycloaliphatic isocyanate with 1,4-butanediol and two polyols of different nature (polyester, polycarbonate diol) with molecular weights of 1000 Da. Only the PU synthesized with polycarbonate diol polyol (YCD) showed intrinsic self-healing at 20 °C. For assessing the mechanism of intrinsic self-healing of YCD, a structural characterization by molecular weights determination, infrared and X-ray photoelectronic spectroscopies, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, and dynamic mechanical thermal analysis was carried out. The experimental evidence concluded that the self-healing at 20 °C of YCD was due to dynamic non-covalent exchange interactions among the polycarbonate soft segments. Therefore, the chemical nature of the polyol played a key role in developing PUs with intrinsic self-healing at 20 °C.

2.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177298

RESUMO

A new device and procedure for the in situ quantification of the extent of the self-healing and the kinetics of self-healing of polymeric materials were proposed. The device consisted of flowing an inert gas below the sample placed in a hermetically closed chamber. When the sample was perforated/damaged, the gas passed through the hole made in the polymeric material and the gas flow rate declined as the self-healing was produced. Once the gas flow rate stopped, the self-healing was completed. The proposed method was simple, quick, and reproducible, and several in situ self-healing experiments at different temperatures could be performed in the same sample. As a proof of concept, the new device and method have been used for measuring the self-healing ability of different polyurethanes.

3.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231940

RESUMO

There are no previous studies on the interactions between polyols of different nature as a model for understanding the interactions between soft segments in PUs. In this study, different blends of two polyols of different natures (polyester-PE, and polycarbonate diol-CD) and similar molecular weights were prepared and their structural, thermal, surface, viscoelastic, and self-adhesion properties were assessed. Different experimental techniques were used: infrared spectroscopy (ATR-IR), differential scanning calorimetry (DSC), X-ray diffraction, thermal gravimetric analysis (TGA), and plate-plate rheology. PE showed a larger number of structural repeating units and a higher number of polar groups than CD, but the carbonate-carbonate interactions in CD were stronger than the ester-ester interactions in PE. The blending of CD and PE imparted synergic structural properties, particularly in the blends containing less than 50 wt.% PE, they were associated with the disrupt of the carbonate-carbonate interactions in CD and the formation of new ester-carbonate and hydroxyl-carbonate interactions. CD + PE blends with less than 50 wt.% PE exhibited higher glass transition temperatures, a new diffraction peak at 2θ = 24°, one additional thermal degradation at 426-436 °C, and a less-steep decline of the storage moduli. Furthermore, the different interactions between the polyol chains in the blends were also evidenced on their surface properties, and all CD + PE blends showed self-adhesion properties which seemed related to the existence of ester-carbonate and carbonate-carbonate interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...