Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628189

RESUMO

Root hair cells are important sensors of soil conditions. They grow towards and absorb water-soluble nutrients. This fast and oscillatory growth is mediated by continuous remodeling of the cell wall. Root hair cell walls contain polysaccharides and hydroxyproline-rich glycoproteins, including extensins (EXTs). Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either cell wall loosening or polymerization of cell wall components, such as Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-PRXs is unknown. Using genetic, biochemical, and modeling approaches, we identified and characterized three root-hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. prx01,44,73 triple mutation and PRX44 and PRX73 overexpression had opposite effects on root hair growth, peroxidase activity, and ROS production, with a clear impact on cell wall thickness. We use an EXT fluorescent reporter with contrasting levels of cell wall insolubilization in prx01,44,73 and PRX44-overexpressing background plants. In this study, we propose that PRX01, PRX44, and PRX73 control EXT-mediated cell wall properties during polar expansion of root hair cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Parede Celular , Peroxidases/genética , Raízes de Plantas/genética
2.
Front Plant Sci ; 13: 833612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251104

RESUMO

The molecular machinery orchestrating microautophagy, whereby eukaryotic cells sequester autophagic cargo by direct invagination of the vacuolar/lysosomal membrane, is still largely unknown, especially in plants. Here, we demonstrate microautophagy of storage proteins in the maize aleurone cells of the endosperm and analyzed proteins with potential regulatory roles in this process. Within the cereal endosperm, starchy endosperm cells accumulate storage proteins (mostly prolamins) and starch whereas the peripheral aleurone cells store oils, storage proteins, and specialized metabolites. Although both cell types synthesize prolamins, they employ different pathways for their subcellular trafficking. Starchy endosperm cells accumulate prolamins in protein bodies within the endoplasmic reticulum (ER), whereas aleurone cells deliver prolamins to vacuoles via an autophagic mechanism, which we show is by direct association of ER prolamin bodies with the tonoplast followed by engulfment via microautophagy. To identify candidate proteins regulating this process, we performed RNA-seq transcriptomic comparisons of aleurone and starchy endosperm tissues during seed development and proteomic analysis on tonoplast-enriched fractions of aleurone cells. From these datasets, we identified 10 candidate proteins with potential roles in membrane modification and/or microautophagy, including phospholipase-Dα5 and a possible EUL-like lectin. We found that both proteins increased the frequency of tonoplast invaginations when overexpressed in Arabidopsis leaf protoplasts and are highly enriched at the tonoplast surface surrounding ER protein bodies in maize aleurone cells, thus supporting their potential connections to microautophagy. Collectively, this candidate list now provides useful tools to study microautophagy in plants.

3.
Plant Cell ; 33(8): 2850-2868, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34125207

RESUMO

Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ceras/química , Ceras/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(31): 18849-18857, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690691

RESUMO

One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.


Assuntos
Proteínas de Arabidopsis , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio , Cálcio/metabolismo , Imunidade Vegetal/fisiologia , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Vacúolos/metabolismo
5.
Methods Mol Biol ; 2177: 143-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632811

RESUMO

We adapted an efficient cell-free protein synthesis-based protocol for the production of lipid-binding proteins. The experimental procedures are based on the following steps: (1) cell-free synthesis of soluble, lipid-binding proteins fused to small tags; (2) analysis by dot blot of the accessibility of antibodies to the small tags. (3) protein lipid overlay assay with, immunodetection of bound protein by either chemiluminescence or fluorescence. We also provide a fast and inexpensive protocol for homemade lipid nitrocellulose strips spotted with acidic lipids (mostly phosphoinositides) extracted from plant tissues. These homemade lipid strips can be used for preliminary screen and characterization of putative phosphoinositide-binding proteins.


Assuntos
Sistema Livre de Células/metabolismo , Epitopos/química , Proteínas Ligadas a Lipídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ligadas a Lipídeos/química , Luminescência , Fosfatidilinositóis/metabolismo
6.
Elife ; 92020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32011236

RESUMO

Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Endosperma , Proteínas de Plantas , Zea mays/genética , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Endosperma/citologia , Endosperma/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Methods Mol Biol ; 1998: 227-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250306

RESUMO

Most endosomal sorting complex required for transport (ESCRT)-III proteins are not fully functional when expressed as fusion of fluorescent or epitope tags, frequently making the use of specific antibodies the only available method for their detection. Heterologous expression of ESCRT-III proteins in bacteria often results in the formation of insoluble aggregates or inclusion bodies that interfere with their purification. However, inclusion bodies are usually pure protein aggregates with high antigenicity. In addition, since proteins within inclusion bodies are presented in a range of folding states, immunization with inclusion bodies can potentially result in antibodies with specificity for different folding states of the protein under study. We describe here a protocol to isolate bacterial inclusion bodies of plant ESCRT-III proteins for production of polyclonal antibodies. We also describe a nitrocellulose-based immunoaffinity purification method that allows the immobilization of ESCRT-III proteins and the subsequent isolation of specific antibodies from a crude serum.


Assuntos
Anticorpos/isolamento & purificação , Proteínas de Arabidopsis/isolamento & purificação , Complexos Endossomais de Distribuição Requeridos para Transporte/isolamento & purificação , Corpos de Inclusão/metabolismo , Proteínas de Transporte Vesicular/isolamento & purificação , Animais , Anticorpos/imunologia , Proteínas de Arabidopsis/administração & dosagem , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/administração & dosagem , Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Escherichia coli/genética , Vetores Genéticos/genética , Imunização/métodos , Plasmídeos/genética , Dobramento de Proteína , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Purificação por Afinidade em Tandem/métodos , Transformação Bacteriana , Proteínas de Transporte Vesicular/administração & dosagem , Proteínas de Transporte Vesicular/imunologia , Proteínas de Transporte Vesicular/metabolismo
8.
Front Plant Sci ; 9: 1985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697224

RESUMO

Seeds accumulate iron during embryo maturation stages of embryogenesis. Using Arabidopsis thaliana as model plant, it has been described that mature embryos accumulate iron within a specific cell layer, the endodermis. This distribution pattern was conserved in most of the analyzed members from Brassicales, with the exception of the basal Vasconcellea pubescens that also showed elevated amounts of iron in cortex cells. To determine whether the V. pubescens iron distribution was indicative of a wider pattern in non-Brassicales Eudicotyledoneae, we studied iron distribution pattern in different embryos belonging to plant species from different Orders from Eudicotyledoneae and one basal from Magnoliidae. The results obtained indicate that iron distribution in A. thaliana embryo is an extreme case of apomorphic character found in Brassicales, not-extensive to the rest of Eudicotyledoneae.

9.
J Cell Biol ; 216(7): 2167-2177, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28592443

RESUMO

Ubiquitinated plasma membrane proteins (cargo) are delivered to endosomes and sorted by endosomal sorting complex required for transport (ESCRT) machinery into endosome intralumenal vesicles (ILVs) for degradation. In contrast to the current model that postulates that ILVs form individually from inward budding of the endosomal limiting membrane, plant ILVs form as networks of concatenated vesicle buds by a novel vesiculation mechanism. We ran computational simulations based on experimentally derived diffusion coefficients of an ESCRT cargo protein and electron tomograms of Arabidopsis thaliana endosomes to measure cargo escape from budding ILVs. We found that 50% of the ESCRT cargo would escape from a single budding profile in 5-20 ms and from three concatenated ILVs in 80-200 ms. These short cargo escape times predict the need for strong diffusion barriers in ILVs. Consistent with a potential role as a diffusion barrier, we find that the ESCRT-III protein SNF7 remains associated with ILVs and is delivered to the vacuole for degradation.


Assuntos
Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Simulação por Computador , Difusão , Tomografia com Microscopia Eletrônica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Cinética , Fusão de Membrana , Modelos Biológicos , Corpos Multivesiculares/ultraestrutura , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/ultraestrutura , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
10.
Annu Rev Plant Biol ; 67: 309-35, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27128466

RESUMO

Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.


Assuntos
Membrana Celular/metabolismo , Endocitose , Endossomos , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Proteico , Vacúolos/metabolismo
11.
Plant Physiol ; 171(1): 251-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26983994

RESUMO

SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Desenvolvimento Vegetal/fisiologia , Adenosina Trifosfatases/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/fisiologia , Cotilédone , DNA Bacteriano , Expressão Gênica , Gravitação , Gravitropismo , Ácidos Indolacéticos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Mutação , Oxirredutases , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Plant Physiol ; 170(1): 401-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26530315

RESUMO

Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H(+)-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H(+)-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H(+) across the tonoplast and endomembranes to create proton motive force (pmf). Recently, an additional role for H(+)-PPases in phloem loading and biomass partitioning was proposed. In companion cells (CCs) of the phloem, H(+)-PPases localize to the plasma membrane rather than endomembranes, and rather than hydrolyzing PPi to create pmf, pmf is utilized to synthesize PPi. Additional PPi in the CCs promotes sucrose oxidation and ATP synthesis, which the plasma membrane P-type ATPase in turn uses to create more pmf for phloem loading of sucrose via sucrose-H(+) symporters. To test this model, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated with constitutive and CC-specific overexpression of AVP1, encoding type 1 ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1. Plants with both constitutive and CC-specific overexpression accumulated more biomass in shoot and root systems. (14)C-labeling experiments showed enhanced photosynthesis, phloem loading, phloem transport, and delivery to sink organs. The results obtained with constitutive and CC-specific promoters were very similar, such that the growth enhancement mediated by AVP1 overexpression can be attributed to its role in phloem CCs. This supports the model for H(+)-PPases functioning as PPi synthases in the phloem by arguing that the increases in biomass observed with AVP1 overexpression stem from improved phloem loading and transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Floema/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroponia , Pirofosfatase Inorgânica/genética , Floema/genética , Células Vegetais/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas
14.
Plant Physiol ; 167(4): 1541-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681328

RESUMO

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Difosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Expressão Gênica , Genes Reporter , Homeostase , Pirofosfatase Inorgânica/genética , Mutação , Especificidade de Órgãos , Fenótipo , Floema/enzimologia , Floema/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sacarose/metabolismo
15.
Plant Physiol ; 166(2): 889-902, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149602

RESUMO

The molecular mechanisms by which vascular tissues acquire their identities are largely unknown. Here, we report on the identification and characterization of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC), a member of a 15-member, plant-specific gene family in Arabidopsis (Arabidopsis thaliana) that encodes proteins of unknown function with four predicted transmembrane domains. Homozygous vcc mutants displayed cotyledon vein networks of reduced complexity and disconnected veins. Similar disconnections or gaps were observed in the provasculature of vcc embryos, indicating that defects in vein connectivity appear early in mutant embryo development. Consistently, the overexpression of VCC leads to an unusually high proportion of cotyledons with high-complexity vein networks. Neither auxin distribution nor the polar localization of the auxin efflux carrier were affected in vcc mutant embryos. Expression of VCC was detected in developing embryos and procambial, cambial, and vascular cells of cotyledons, leaves, roots, hypocotyls, and anthers. To evaluate possible genetic interactions with other genes that control vasculature patterning in embryos, we generated a double mutant for VCC and OCTOPUS (OPS). The vcc ops double mutant embryos showed a complete loss of high-complexity vascular networks in cotyledons and a drastic increase in both provascular and vascular disconnections. In addition, VCC and OPS interact physically, suggesting that VCC and OPS are part of a complex that controls cotyledon vascular complexity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Sementes/metabolismo , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
16.
Plant Physiol ; 161(3): 1557-69, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23307651

RESUMO

Plant nitrate (NO3(-)) acquisition depends on the combined activities of root high- and low-affinity NO3(-) transporters and the proton gradient generated by the plasma membrane H(+)-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa 'Conquistador') plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H(+)-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H(+)-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H(+)-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3(-) limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3(-) and sugars. Enhanced accumulation of (15)N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Lactuca/metabolismo , Nitrogênio/metabolismo , Ácidos/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Biomassa , Carboidratos/análise , Carbono/metabolismo , Fertilizantes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Engenharia Genética , Imuno-Histoquímica , Pirofosfatase Inorgânica/genética , Lactuca/efeitos dos fármacos , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Transportadores de Nitrato , Nitratos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
18.
Plant Sci ; 183: 96-105, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22195582

RESUMO

Coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na⁺/H⁺ antiporter (SOS1) is involved in salt tolerance, presumably in sodium extrusion; the vacuolar type I H⁺-PPase AVP1 is involved in vacuolar sodium sequestration, but its overexpression has also been shown to alter the abundance and activity of the PM H⁺-ATPase. Here we investigate the relationship between these transporters utilizing loss-of-function mutants of SOS1 (sos1) and increased expression of AVP1 (AVP1OX). Heightened expression of AVP1 enhances pyrophosphate-dependent proton pump activity, salt tolerance, ion vacuolar sequestration, K⁺ uptake capacity, root hair development, osmotic responses, and PM ATPase hydrolytic and proton pumping activities. In sos1 lines overexpressing AVP1, these phenotypes are negatively affected demonstrating that sos1 is epistatic to AVP1. Enhanced AVP1 protein levels require SOS1 and this regulation appears to be post-translational.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Epistasia Genética , Pirofosfatase Inorgânica/metabolismo , Tolerância ao Sal/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Pirofosfatase Inorgânica/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Regulação para Cima
19.
Plant Sci ; 181(1): 23-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21600394

RESUMO

Previous literature has shown the presence of a plasma membrane (PM) localized type I H(+)-PPase in sieve elements of Ricinus communis. Unfortunately, the physiological relevance of these findings remains obscure due to the lack of genetic and molecular reagents to study R. communis. The availability of H(+)-PPase gain and loss-of-function mutants in Arabidopsis thaliana makes this plant an attractive genetic model to address the question, but data on the PM localization of this H(+)-PPase in A. thaliana are limited to two proteomic approaches. Here we present the first report on the localization of the type I H(+)-PPase AVP1 in sieve element-companion cell complexes (SE-CCc) from A. thaliana. Double epifluorescence and immunogold labeling experiments are consistent with the co-localization of AVP1 and PIP1 (a bona fide PM maker) in PM of SE-CCc from A. thaliana.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Pirofosfatase Inorgânica/química , Aquaporinas/química , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo/métodos , Imuno-Histoquímica/métodos , Floema/química , Floema/ultraestrutura , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química
20.
Plant Biotechnol J ; 9(1): 88-99, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20492547

RESUMO

The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Gossypium/genética , Gossypium/fisiologia , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/fisiologia , Plantas Geneticamente Modificadas , Arabidopsis/genética , Fibra de Algodão , Secas , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Estresse Fisiológico , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...