Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057061

RESUMO

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).

2.
Comput Struct Biotechnol J ; 19: 6465-6480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976305

RESUMO

DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.

3.
Cas Lek Cesk ; 159(7-8): 268-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33445932

RESUMO

In order to maximize post-therapeutic quality of life, radio(chemo)therapy becomes preferred over surgery in head-and-neck tumor (HNT) treatment. However, the therapy selection is only based on the clinical experience and patient's preferences as the radiosensitivity markers remain unknown. New possibilities of deciding on the best primary therapy, moving us towards personalized medicine based on quantifiable biomarkers, have been opened by studies on DNA radiation damage and repair in individual patients tumors. Together with the importance of radiotherapy in HNT oncology, we discuss here our preliminary results revealing the existence of several HNT groups with respect to genome stability and repair ability of tumor cells after irradiation. Monitoring of the formation and disappearance of γH2AX/53BP1 foci in tumor cell primo-cultures derived from individual patients suggests that DNA repair capacity of the identified groups correlates with the tumor cell radiosensitivity. Our findings thus improve understanding of HNT biology; nevertheless, the relationship between the repair groups and in vivo response of tumors to radiotherapy must be further studied. Since most HNTs do not suffer from repair defects, although their viability varies after irradiation, pre-therapeutic tests covering the full spectrum of HNT radiosensitivity causes will require the use of a combination of multiple, still undiscovered biomarkers.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Dano ao DNA , Reparo do DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Histonas/genética , Histonas/metabolismo , Humanos , Qualidade de Vida
4.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704035

RESUMO

From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Linhagem Celular Tumoral , Gadolínio/química , Ouro/química , Células HeLa , Humanos , Microscopia Confocal
5.
Langmuir ; 35(23): 7496-7508, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30339402

RESUMO

The mechanisms underlying cell protection from cryoinjury are not yet fully understood. Recent biological studies have addressed cryopreserved cell survival but have not correlated the cryoprotection effectiveness with the impact of cryoprotectants on the most important cell structure, the nucleus, and the freeze/thaw process. We identified changes of cell nuclei states caused by different types of cryoprotectants and associate them with alterations of the freeze/thaw process in cells. Namely, we investigated both higher-order chromatin structure and nuclear envelope integrity as possible markers of freezing and thawing processes. Moreover, we analyzed in detail the relationship between nuclear envelope integrity, chromatin condensation, freeze/thaw processes in cells, and cryopreservation efficiency for dimethyl sulfoxide, glycerol, trehalose, and antifreeze protein. Our interdisciplinary study reveals how changes in cell nuclei induced by cryoprotectants affect the ability of cells to withstand freezing and thawing and how nuclei changes correlate with processes during freezing and thawing. Our results contribute to the deeper fundamental understanding of the freezing processes, notably in the cell nucleus, which will expand the applications and lead to the rational design of cryoprotective materials and protocols.


Assuntos
Núcleo Celular/metabolismo , Criopreservação , Linhagem Celular , Sobrevivência Celular , Humanos
6.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469529

RESUMO

DNA double stranded breaks (DSBs) are the most serious type of lesions introduced into chromatin by ionizing radiation. During DSB repair, cells recruit different proteins to the damaged sites in a manner dependent on local chromatin structure, DSB location in the nucleus, and the repair pathway entered. 53BP1 is one of the important players participating in repair pathway decision of the cell. Although many molecular biology details have been investigated, the architecture of 53BP1 repair foci and its development during the post-irradiation time, especially the period of protein recruitment, remains to be elucidated. Super-resolution light microscopy is a powerful new tool to approach such studies in 3D-conserved cell nuclei. Recently, we demonstrated the applicability of single molecule localization microscopy (SMLM) as one of these highly resolving methods for analyses of dynamic repair protein distribution and repair focus internal nano-architecture in intact cell nuclei. In the present study, we focused our investigation on 53BP1 foci in differently radio-resistant cell types, moderately radio-resistant neonatal human dermal fibroblasts (NHDF) and highly radio-resistant U87 glioblastoma cells, exposed to high-LET 15N-ion radiation. At given time points up to 24 h post irradiation with doses of 1.3 Gy and 4.0 Gy, the coordinates and spatial distribution of fluorescently tagged 53BP1 molecules was quantitatively evaluated at the resolution of 10⁻20 nm. Clusters of these tags were determined as sub-units of repair foci according to SMLM parameters. The formation and relaxation of such clusters was studied. The higher dose generated sufficient numbers of DNA breaks to compare the post-irradiation dynamics of 53BP1 during DSB processing for the cell types studied. A perpendicular (90°) irradiation scheme was used with the 4.0 Gy dose to achieve better separation of a relatively high number of particle tracks typically crossing each nucleus. For analyses along ion-tracks, the dose was reduced to 1.3 Gy and applied in combination with a sharp angle irradiation (10° relative to the cell plane). The results reveal a higher ratio of 53BP1 proteins recruited into SMLM defined clusters in fibroblasts as compared to U87 cells. Moreover, the speed of foci and thus cluster formation and relaxation also differed for the cell types. In both NHDF and U87 cells, a certain number of the detected and functionally relevant clusters remained persistent even 24 h post irradiation; however, the number of these clusters again varied for the cell types. Altogether, our findings indicate that repair cluster formation as determined by SMLM and the relaxation (i.e., the remaining 53BP1 tags no longer fulfill the cluster definition) is cell type dependent and may be functionally explained and correlated to cell specific radio-sensitivity. The present study demonstrates that SMLM is a highly appropriate method for investigations of spatiotemporal protein organization in cell nuclei and how it influences the cell decision for a particular repair pathway at a given DSB site.


Assuntos
Reparo de DNA por Recombinação , Imagem Individual de Molécula/métodos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Microscopia Confocal/métodos , Transporte Proteico
7.
Sci Rep ; 8(1): 14694, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279538

RESUMO

In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.


Assuntos
Cromatina/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento/efeitos adversos , Fase S/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatina/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Fibroblastos , Humanos , Células MCF-7 , Pele/citologia
8.
J Nanobiotechnology ; 14(1): 63, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464501

RESUMO

BACKGROUND: Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs. It has been established that the amplification of radiation effects by GdBNs appears due to fast electronic processes. However, the influence of these nanoparticles on cells is not yet understood. In particular, it remains dubious how nanoparticles activated by ionizing radiation interact with cells and their constituents. A crucial question remains open of whether damage to the nucleus is necessary for the radiosensitization exerted by GdBNs (and other nanoparticles). METHODS: We studied the effect of GdBNs on the induction and repair of DNA double-strand breaks (DSBs) in the nuclear DNA of U87 tumor cells irradiated with γ-rays. For this purpose, we used currently the most sensitive method of DSBs detection based on high-resolution confocal fluorescence microscopy coupled with immunodetection of two independent DSBs markers. RESULTS: We show that, in the conditions where GdBNs amplify radiation effects, they remain localized in the cytoplasm, i.e. do not penetrate into the nucleus. In addition, the presence of GdBNs in the cytoplasm neither increases induction of DSBs by γ-rays in the nuclear DNA nor affects their consequent repair. CONCLUSIONS: Our results suggest that the radiosensitization mediated by GdBNs is a cytoplasmic event that is independent of the nuclear DNA breakage, a phenomenon commonly accepted as the explanation of biological radiation effects. Considering our earlier recognized colocalization of GdBNs with the lysosomes and endosomes, we revolutionary hypothesize here about these organelles as potential targets for (some) nanoparticles. If confirmed, this finding of cytoplasmically determined radiosensitization opens new perspectives of using nano-radioenhancers to improve radiotherapy without escalating the risk of pathologies related to genetic damage.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Gadolínio/toxicidade , Glioblastoma/metabolismo , Nanopartículas Metálicas/toxicidade , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Humanos
9.
J Med Chem ; 59(7): 3003-17, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26978566

RESUMO

Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.


Assuntos
Amifostina/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Amifostina/farmacocinética , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Raios gama , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7/efeitos dos fármacos , Células MCF-7/efeitos da radiação , Mercaptoetilaminas/farmacocinética , Microscopia de Fluorescência/métodos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
10.
J Cell Biochem ; 116(10): 2195-209, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808548

RESUMO

We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual.


Assuntos
Histona-Lisina N-Metiltransferase/biossíntese , Histonas/genética , Processamento de Proteína Pós-Traducional/genética , Espermatozoides/metabolismo , Acetilação , Sequência de Aminoácidos , Cromatina/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Metilação , Espermatozoides/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
11.
Chromosome Res ; 18(2): 277-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20204496

RESUMO

The four-horned antelope, Tetracerus quadricornis, is a karyotypic novelty in Bovidae since chromosomal evolution in this species is driven by tandem fusions in contradiction to the overwhelming influence of Robertsonian fusions in other species within the family. Using a combination of differential staining and molecular cytogenetic techniques, we provide the first description of the species' karyotype, draw phylogenetic inferences from the cytogenetic data and discuss possible mechanisms underlying the formation of the tandem fusions in this species. We show (a) that pairs 1-6 of Tetracerus correspond to a combination of Bos taurus orthologous chromosomes that are tandemly fused head to tail, (b) the presence of interstitial centromeric satellite DNA at the junctions of orthologous blocks defined by the cross-species painting data and (c) that in some instances, residual telomeric sequences persist at these sites. We conclude that the attendant result of each fusion is an enlarged acrocentric fusion element comprising a single functional centromere and two terminal telomeres that, collectively, led to a reduction of the 2n = 58 bovid ancestral acrocentric chromosomal complement to the 2n = 38 detected in the four-horned antelope.


Assuntos
Antílopes/genética , Cromossomos de Mamíferos , Animais , Evolução Biológica , Centrômero , Cariotipagem , Filogenia , Sintenia , Telômero
12.
Chromosome Res ; 16(8): 1107-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18937038

RESUMO

Three subspecies of banteng (Bos javanicus) have been described: B. j. javanicus in Java, B. j. lowi in Borneo, and B. j. birmanicus in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. In this paper we provide the first description of the karyotype of the Cambodian banteng. The chromosomal complement of B. j. birmanicus differs from that of B. j. javanicus, which was previously found to be similar to that of cattle, Bos taurus (2n = 60). The Cambodian banteng karyotype has a diploid number of 2n = 56 (FN = 62) and the karyotype consists of 26 pairs of acrocentric chromosomes and two pairs of submetacentric chromosomes. Comparisons with other species of the subtribe Bovina show that the two pairs of bi-armed chromosomes resulted from two centric fusions involving the equivalent of cattle chromosomes 1 and 29, and 2 and 28, respectively. Cross-species fluorescence in-situ hybridization (FISH) with B. taurus whole chromosome paints and satellite DNA I probes was used to identify the chromosomes involved in the translocations, and their orientation. We suggest that Robertsonian translocations (1;29) and (2;28) have been fixed in the common ancestor of Cambodian banteng as a consequence of hybridization with the kouprey (Bos sauveli) during the Pleistocene epoch.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Hibridização Genética/genética , Ruminantes/genética , Translocação Genética/genética , Animais , Camboja , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie
13.
Chromosome Res ; 16(7): 935-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18704723

RESUMO

Chromosomal homologies have been established between cattle (Bos taurus, 2n = 60) and eight species of spiral-horned antelope, Tribe Tragelaphini: Nyala (Tragelaphus angasii, 2n = 55male/56female), Lesser kudu (T. imberbis, 2n = 38male,female), Bongo (T. eurycerus, 2n = 33male/34female), Bushbuck (T. scriptus, 2n = 33male/34female), Greater kudu (T. strepsiceros, 2n = 31male/32female), Sitatunga (T. spekei, 2n = 30male,female) Derby eland (Taurotragus derbianus 2n = 31male/32female) and Common eland (T. oryx 2n = 31male/32female). Chromosomes involved in centric fusions in these species were identified using a complete set of cattle painting probes generated by laser microdissection. Our data support the monophyly of Tragelaphini and a clade comprising T. scriptus, T. spekei, T. euryceros and the eland species T. oryx and T. derbianus, findings that are largely in agreement with sequence-based molecular phylogenies. In contrast, our study suggests that the arid adaptiveness of T. oryx and T. derbianus is recent. Finally, we have identified the presence of the rob(1;29) fusion as an evolutionary marker in most of the tragelaphid species investigated. This rearrangement is associated with reproductive impairment in cattle and raises questions whether subtle distinctions in breakpoint location or differential rescue during meiosis underpin the different outcomes detected among these lineages.


Assuntos
Coloração Cromossômica , Genômica , Filogenia , Ruminantes/classificação , Ruminantes/genética , Animais , Cromossomos de Mamíferos/genética , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...