Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Chem Res ; 29(8): 1463-1477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837136

RESUMO

In an effort to develop potent anti-influenza drugs that inhibit the activity of influenza virus RNA-dependent RNA polymerase (IAV RdRp), a database of nucleoside triphosphates with ~800 molecules were docked with the homology model of IAV RdRp from A/PR/8/34/H1N1 strain. Out of top 12 molecules that bind with higher affinities to the catalytic site of IAV RdRp above and below the PB1 priming loop, only seven molecules decreased the transcriptional activity of the viral RNA polymerase with an IC50 in the range of 0.09-3.58 µM. Molecular docking combining with experimental study indicated that the molecules with linear chain are more effective in inhibiting IAV RdRp replication than the molecules with V-shaped and are cyclic in nature. A correlation between ΔG and LogIC50 for these seven compounds resulted an R 2 value of 0.73. Overall, these newly developed seven nucleoside triphosphates lay a strong foundation for the future development of a new therapeutics that can satisfy the Lipinski's rule of five exhibiting high specificity to the catalytic site of influenza-A viruses.

2.
J Comput Aided Mol Des ; 33(4): 387-404, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739239

RESUMO

To develop potent drugs that inhibit the activity of influenza virus RNA dependent RNA polymerase (RdRp), a set of compounds favipiravir, T-705, T-1105 and T-1106, ribavirin, ribavirin triphosphate viramidine, 2FdGTP (2'-deoxy-2'-fluoroguanosine triphosphate) and AZT-TP (3'-Azido-3'-deoxy-thymidine-5'-triphosphate) were docked with a homology model of IAV RdRp from the A/PR/8/34/H1N1 strain. These compounds bind to four pockets A-D of the IAV RdRp with different mechanism of action. In addition, AZT-TP also binds to the PB1 catalytic site near to the tip of the priming loop with a highest ΔG of - 16.7 Kcal/mol exhibiting an IC50 of 1.12 µM in an in vitro enzyme transcription assay. This shows that AZT-TP mainly prevents the incorporation of incoming nucleotide involved in initiation of vRNA replication. Conversely, 2FdGTP used as a positive control binds to pocket-B at the end of tunnel-II with a highest ΔG of - 16.3 Kcal/mol inhibiting chain termination with a similar IC50 of 1.12 µM. Overall, our computational results in correlation with experimental studies gives information for the first time about the binding modes of the known influenza antiviral compounds in different models of vRNA replication by IAV RdRp. This in turn gives new structural insights for the development of new therapeutics exhibiting high specificity to the PB1 catalytic site of influenza A viruses.


Assuntos
Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Zidovudina/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo
3.
Sci Rep ; 6: 33099, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616185

RESUMO

Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria -42; fungi -19; plant -28; animal -22; plant and animal -1 and common P450 family -1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study's results offer new understanding of the dynamic structural nature of P450s.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Simulação de Dinâmica Molecular , Mycobacterium/genética , Animais , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Filogenia
4.
PLoS One ; 9(1): e86683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466198

RESUMO

Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Família Multigênica , Basidiomycota/classificação , Catálise , Bases de Dados Genéticas , Duplicação Gênica , Genoma Fúngico , Estudo de Associação Genômica Ampla , Oxirredução , Filogenia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...