Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(41): 25302-25309, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989142

RESUMO

Falling atmospheric CO2 levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.0 Ma) based on TEX86 sea surface temperature (SST) estimates from southwestern Atlantic Deep Sea Drilling Project Site 516 (paleolatitude ∼36°S) and western equatorial Atlantic Ocean Drilling Project Site 929 (paleolatitude ∼0°), combined with a compilation of existing SST records and climate modeling. In this relatively low CO2 Oligocene world (∼300 to 700 ppm), warm climates similar to those of the late Eocene continued with only brief interruptions, while the Antarctic ice sheet waxed and waned. SSTs are spatially heterogenous, but generally support late Oligocene warming coincident with declining atmospheric CO2 This Oligocene warmth, especially at high latitudes, belies a simple relationship between climate and atmospheric CO2 and/or ocean gateways, and is only partially explained by current climate models. Although the dominant climate drivers of this enigmatic Oligocene world remain unclear, our results help fill a gap in understanding past Cenozoic climates and the way long-term climate sensitivity responded to varying background climate states.

2.
Science ; 352(6281): 76-80, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034370

RESUMO

About 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing. A more stable, continental-scale ice sheet calving at the coastline did not form until ~32.8 million years ago, coincident with the earliest time that atmospheric CO2 levels fell below ~600 ppm. Our results provide insight into the potential of the AIS for threshold behavior and have implications for its sensitivity to atmospheric CO2 concentrations above present-day levels.

3.
Proc Natl Acad Sci U S A ; 112(18): 5607-12, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902508

RESUMO

Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800-950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period.


Assuntos
Aclimatação , Agricultura/história , Secas/história , Ecossistema , Agricultura/métodos , Agricultura/tendências , Civilização/história , Clima , Mudança Climática , Meio Ambiente , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , História Antiga , Humanos , Indígenas Sul-Americanos/história , Lipídeos/análise , México , Isótopos de Oxigênio , Plantas/química , Chuva , Fatores de Tempo , Ceras/análise
4.
Science ; 346(6216): 1467, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25525239

RESUMO

Contrary to our conclusions, Ravelo et al. argue that our TEX86-based sea surface temperature (SST) records do not conflict with the supposition of "permanent El Niño-like" conditions during the early Pliocene. We show that the way Ravelo et al. treat the existing temperature data perpetuates an inaccurate impression of cooler Pacific warm-pool SSTs and low equatorial temperature gradients in the past.

5.
Proc Natl Acad Sci U S A ; 111(18): 6582-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753570

RESUMO

Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

6.
Science ; 344(6179): 84-7, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24700856

RESUMO

The appearance of permanent El Niño-like conditions prior to 3 million years ago is founded on sea-surface temperature (SST) reconstructions that show invariant Pacific warm pool temperatures and negligible equatorial zonal temperature gradients. However, only a few SST records are available, and these are potentially compromised by changes in seawater chemistry, diagenesis, and calibration limitations. For this study, we establish new biomarker-SST records and show that the Pacific warm pool was ~4°C warmer 12 million years ago. Both the warm pool and cold tongue slowly cooled toward modern conditions while maintaining a zonal temperature gradient of ~3°C in the late Miocene, which increased during the Plio-Pleistocene. Our results contrast with previous temperature reconstructions that support the supposition of a permanent El Niño-like state.

7.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20130096, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24043869

RESUMO

The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the Neogene with low CO2 levels, algal carbon concentrating mechanisms and spontaneous biocarbonate-CO2 conversions are likely to play a more important role in algal carbon fixation, which provides a potential bias to the alkenone-pCO2 method.


Assuntos
Atmosfera , Dióxido de Carbono/análise , Clima , Difusão , Modelos Químicos , Temperatura
8.
Nature ; 484(7392): 87-91, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481362

RESUMO

Between about 55.5 and 52 million years ago, Earth experienced a series of sudden and extreme global warming events (hyperthermals) superimposed on a long-term warming trend. The first and largest of these events, the Palaeocene-Eocene Thermal Maximum (PETM), is characterized by a massive input of carbon, ocean acidification and an increase in global temperature of about 5 °C within a few thousand years. Although various explanations for the PETM have been proposed, a satisfactory model that accounts for the source, magnitude and timing of carbon release at the PETM and successive hyperthermals remains elusive. Here we use a new astronomically calibrated cyclostratigraphic record from central Italy to show that the Early Eocene hyperthermals occurred during orbits with a combination of high eccentricity and high obliquity. Corresponding climate-ecosystem-soil simulations accounting for rising concentrations of background greenhouse gases and orbital forcing show that the magnitude and timing of the PETM and subsequent hyperthermals can be explained by the orbitally triggered decomposition of soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost. This massive carbon reservoir had the potential to repeatedly release thousands of petagrams (10(15) grams) of carbon to the atmosphere-ocean system, once a long-term warming threshold had been reached just before the PETM. Replenishment of permafrost soil carbon stocks following peak warming probably contributed to the rapid recovery from each event, while providing a sensitive carbon reservoir for the next hyperthermal. As background temperatures continued to rise following the PETM, the areal extent of permafrost steadily declined, resulting in an incrementally smaller available carbon pool and smaller hyperthermals at each successive orbital forcing maximum. A mechanism linking Earth's orbital properties with release of soil carbon from permafrost provides a unifying model accounting for the salient features of the hyperthermals.


Assuntos
Carbono/análise , Congelamento , Aquecimento Global/história , Efeito Estufa/história , Solo/química , Temperatura , Regiões Antárticas , Regiões Árticas , Atmosfera/química , Calibragem , Ciclo do Carbono , Ecossistema , Retroalimentação , História Antiga , Itália , Modelos Teóricos , Água do Mar/química
9.
Proc Natl Acad Sci U S A ; 109(17): 6423-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22496594

RESUMO

The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.

10.
Science ; 334(6060): 1261-4, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22144622

RESUMO

Earth's modern climate, characterized by polar ice sheets and large equator-to-pole temperature gradients, is rooted in environmental changes that promoted Antarctic glaciation ~33.7 million years ago. Onset of Antarctic glaciation reflects a critical tipping point for Earth's climate and provides a framework for investigating the role of atmospheric carbon dioxide (CO(2)) during major climatic change. Previously published records of alkenone-based CO(2) from high- and low-latitude ocean localities suggested that CO(2) increased during glaciation, in contradiction to theory. Here, we further investigate alkenone records and demonstrate that Antarctic and subantarctic data overestimate atmospheric CO(2) levels, biasing long-term trends. Our results show that CO(2) declined before and during Antarctic glaciation and support a substantial CO(2) decrease as the primary agent forcing Antarctic glaciation, consistent with model-derived CO(2) thresholds.

11.
Science ; 330(6006): 957-61, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21071667

RESUMO

Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.


Assuntos
Ecossistema , Aquecimento Global , Plantas , Árvores , Clima Tropical , Atmosfera , Biodiversidade , Dióxido de Carbono , Colômbia , Extinção Biológica , Magnoliopsida , Pólen , Esporos , Temperatura , Tempo , Venezuela
12.
Nature ; 460(7251): 85-8, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19571882

RESUMO

Environmental conditions during the past 24 million years are thought to have been favourable for enhanced rates of atmospheric carbon dioxide drawdown by silicate chemical weathering. Proxy records indicate, however, that the Earth's atmospheric carbon dioxide concentrations did not fall below about 200-250 parts per million during this period. The stabilization of atmospheric carbon dioxide concentrations near this minimum value suggests that strong negative feedback mechanisms inhibited further drawdown of atmospheric carbon dioxide by high rates of global silicate rock weathering. Here we investigate one possible negative feedback mechanism, occurring under relatively low carbon dioxide concentrations and in warm climates, that is related to terrestrial plant productivity and its role in the decomposition of silicate minerals. We use simulations of terrestrial and geochemical carbon cycles and available experimental evidence to show that vegetation activity in upland regions of active orogens was severely limited by near-starvation of carbon dioxide in combination with global warmth over this period. These conditions diminished biotic-driven silicate rock weathering and thereby attenuated an important long-term carbon dioxide sink. Although our modelling results are semi-quantitative and do not capture the full range of biogeochemical feedbacks that could influence the climate, our analysis indicates that the dynamic equilibrium between plants, climate and the geosphere probably buffered the minimum atmospheric carbon dioxide concentrations over the past 24 million years.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Sedimentos Geológicos/química , Plantas/metabolismo , Silicatos/química , Animais , Biomassa , Clima , Eucariotos , Geologia , História Antiga , Camada de Gelo , Modelos Biológicos , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal
13.
Oecologia ; 160(3): 461-70, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19352720

RESUMO

The effect of low intensity continuous light, e.g., in the High Arctic summer, on plant carbon and hydrogen isotope fractionations is unknown. We conducted greenhouse experiments to test the impact of light quantity and duration on both carbon and hydrogen isotope compositions of three deciduous conifers whose fossil counterparts were components of Paleogene Arctic floras: Metasequoia glyptostroboides, Taxodium distichum, and Larix laricina. We found that plant leaf bulk carbon isotopic values of the examined species were 1.75-4.63 per thousand more negative under continuous light (CL) than under diurnal light (DL). Hydrogen isotope values of leaf n-alkanes under continuous light conditions revealed a D-enriched hydrogen isotope composition of up to 40 per thousand higher than in diurnal light conditions. The isotope offsets between the two light regimes is explained by a higher ratio of intercellular to atmospheric CO(2) concentration (C (i)/C (a)) and more water loss for plants under continuous light conditions during a 24-h transpiration cycle. Apparent hydrogen isotope fractionations between source water and individual lipids (epsilon(lipid-water)) range from -62 per thousand (Metasequoia C(27) and C(29)) to -87 per thousand (Larix C(29)) in leaves under continuous light. We applied these hydrogen fractionation factors to hydrogen isotope compositions of in situ n-alkanes from well-preserved Paleogene deciduous conifer fossils from the Arctic region to estimate the deltaD value in ancient precipitation. Precipitation in the summer growing season yielded a deltaD of -186 per thousand for late Paleocene, -157 per thousand for early middle Eocene, and -182 per thousand for late middle Eocene. We propose that high-latitude summer precipitation in this region was supplemented by moisture derived from regionally recycled transpiration of the polar forests that grew during the Paleogene warming.


Assuntos
Isótopos de Carbono/análise , Fósseis , Hidrogênio/análise , Folhas de Planta/química , Traqueófitas/química , Regiões Árticas , Fracionamento Químico , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura
14.
Science ; 323(5918): 1187-90, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19251622

RESUMO

About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were approximately 20 degrees C and cooled an average of approximately 5 degrees C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

15.
Nature ; 455(7213): 652-6, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18833277

RESUMO

The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr ago, but have been near or below that level ever since. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Clima Frio , Camada de Gelo , Animais , Regiões Antárticas , Cálcio , Efeito Estufa , História do Século XXI , História Antiga , Magnésio , Isótopos de Oxigênio , Estações do Ano
16.
Science ; 314(5805): 1556-7, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17158314
17.
Nature ; 442(7103): 671-5, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16906647

RESUMO

The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.


Assuntos
Efeito Estufa , Água do Mar/análise , Água do Mar/química , Temperatura , Alcanos/metabolismo , Regiões Árticas , Biomarcadores/análise , Carbonato de Cálcio/análise , Carbonato de Cálcio/metabolismo , Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , História Antiga , Umidade , Hidrogênio/análise , Hidrogênio/química , Biologia Marinha , Oceanos e Mares , Plantas/metabolismo , Chuva , Cloreto de Sódio/análise , Fatores de Tempo
18.
Nature ; 441(7093): 610-3, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16752441

RESUMO

The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.


Assuntos
Água do Mar , Temperatura , Clima Tropical , Animais , Regiões Árticas , Dinoflagellida/isolamento & purificação , Fósseis , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Gelo , Oceanos e Mares , Esporos/isolamento & purificação , Fatores de Tempo
19.
Science ; 309(5734): 600-3, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15961630

RESUMO

The relation between the partial pressure of atmospheric carbon dioxide (pCO2) and Paleogene climate is poorly resolved. We used stable carbon isotopic values of di-unsaturated alkenones extracted from deep sea cores to reconstruct pCO2 from the middle Eocene to the late Oligocene (approximately 45 to 25 million years ago). Our results demonstrate that pCO2 ranged between 1000 to 1500 parts per million by volume in the middle to late Eocene, then decreased in several steps during the Oligocene, and reached modern levels by the latest Oligocene. The fall in pCO2 likely allowed for a critical expansion of ice sheets on Antarctica and promoted conditions that forced the onset of terrestrial C4 photosynthesis.


Assuntos
Atmosfera , Dióxido de Carbono/análise , Clima , Fotossíntese , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Ecossistema , Eucariotos/citologia , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Gelo , Fitoplâncton/citologia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Tempo
20.
Philos Trans A Math Phys Eng Sci ; 360(1793): 609-32, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12804296

RESUMO

Cenozoic climates have varied across a variety of time-scales, including slow, unidirectional change over tens of millions of years, as well as severe, geologically abrupt shifts in Earth's climatic state. Establishing the history of atmospheric carbon dioxide is critical in prioritizing the factors responsible for past climatic events, and integral in positioning future climate change within a geological context. One approach in this pursuit uses the stable carbon isotopic composition of marine organic molecules known as alkenones. The following report represents a summary of the factors affecting alkenone carbon isotopic compositions, the underlying assumptions and accuracy of short- and long-term CO(2) records established from these sedimentary molecules, and their implications for the controls on the evolution of Cenozoic climates.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Clima , Eucariotos/metabolismo , Cetonas/análise , Atmosfera/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Células Cultivadas , Simulação por Computador , Planeta Terra , Eucariotos/química , Evolução Química , Evolução Planetária , Cetonas/química , Cetonas/metabolismo , Biologia Marinha/métodos , Modelos Biológicos , Radiometria/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...