Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 125: 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000777

RESUMO

Basement membranes are thin strong sheets of extracellular matrix. They provide mechanical and biochemical support to epithelia, muscles, nerves, and blood vessels, among other tissues. The mechanical properties of basement membranes are conferred in part by Collagen IV (Col4), an abundant protein of basement membranes that forms an extensive two-dimensional network through head-to-head and tail-to-tail interactions. After the Col4 network is assembled into a basement membrane, it is crosslinked by the matrix-resident enzyme Peroxidasin to form a large covalent polymer. Peroxidasin and Col4 crosslinking are highly conserved throughout the animal kingdom, indicating they are important, but homozygous mutant mice have mild phenotypes. To explore the role of Peroxidasin, we analyzed mutants in Drosophila, including a new CRISPR-generated catalytic null, and found that homozygotes were mostly lethal with 13 % viable escapers. Mouse mutants also show semi-lethality, with Mendelian analysis demonstrating ∼50 % lethality and ∼50 % escapers. Despite the strong mutations, the homozygous fly and mouse escapers had low but detectable levels of Col4 crosslinking, indicating the existence of inefficient alternative crosslinking mechanisms, probably responsible for the viable escapers. Fly mutant phenotypes are consistent with decreased basement membrane stiffness. Interestingly, we found that even after basement membranes are assembled and crosslinked in wild-type animals, continuing Peroxidasin activity is required in adults to maintain tissue stiffness over time. These results suggest that Peroxidasin crosslinking may be more important than previously appreciated.


Assuntos
Peroxidase , Peroxidasina , Animais , Camundongos , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/genética
2.
J Biol Chem ; 299(12): 105459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977222

RESUMO

The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.


Assuntos
Colágeno Tipo IV , Membrana Basal Glomerular , Mamíferos , Animais , Anuros , Colágeno Tipo IV/classificação , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/química , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/fisiologia , Feiticeiras (Peixe) , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiologia , Tubarões , Especificidade da Espécie , Urodelos
3.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905027

RESUMO

Collagen IV is a primordial component of basement membranes, a specialized form of extracellular matrix that enabled multi-cellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), encoded by six genes (COL4A1 to COL4A6), into three distinct scaffolds: the α121, the α345 and a mixed scaffold containing both α121 and α565. The six mammalian COL4A genes occur in pairs that occur in a head-to-head arrangement on three distinct chromosomes. In Alport syndrome, variants in the COL4A3, 4 or 5 genes cause either loss or defective assembly of the collagen IV α345 scaffold which results in a dysfunctional glomerular basement membrane, proteinuria and progression to renal failure in millions of people worldwide. Here, we determine the evolutionary emergence and diversification of the COL4A genes using comparative genomics and biochemical analyses. Using syntenic relationships to genes closely linked to the COL4A genes, we determine that the COL4A3 and COL4A4 gene pair appeared in cyclostomes (hagfish and lampreys) while the COL4A5 and COL4A6 gene pair emerged in gnathostomes, jawed vertebrates. The more basal chordate species, lancelets and tunicates, do not have discrete kidneys and have a single COL4A gene pair, though often with single isolated COL4 genes similar to those found in C elegans . Remarkably, while the six COL4A genes are conserved in vertebrates, amphibians have lost the COL4A3 and COL4A4 genes. Our findings of the evolutionary emergence of these genes, together with the amphibian double-knockout, opens an experimental window to gain insights into functionality of the Col IV α345 scaffold.

4.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503104

RESUMO

Basement membranes are thin strong sheets of extracellular matrix. They provide mechanical and biochemical support to epithelia, muscles, nerves, and blood vessels, among other tissues. The mechanical properties of basement membranes are conferred in part by Collagen IV (Col4), an abundant protein of basement membrane that forms an extensive two-dimensional network through head-to-head and tail-to-tail interactions. After the Col4 network is assembled into a basement membrane, it is crosslinked by the matrix-resident enzyme Peroxidasin to form a large covalent polymer. Peroxidasin and Col4 crosslinking are highly conserved, indicating they are essential, but homozygous mutant mice have mild phenotypes. To explore the role of Peroxidasin, we analyzed mutants in Drosophila, including a newly generated catalytic null, and found that homozygotes were mostly lethal with 13% viable escapers. A Mendelian analysis of mouse mutants shows a similar pattern, with homozygotes displaying ~50% lethality and ~50% escapers. Despite the strong mutations, the homozygous escapers had low but detectable levels of Col4 crosslinking, indicating that inefficient alternative mechanisms exist and that are probably responsible for the viable escapers. Further, fly mutants have phenotypes consistent with a decrease in stiffness. Interestingly, we found that even after adult basement membranes are assembled and crosslinked, Peroxidasin is still required to maintain stiffness. These results suggest that Peroxidasin crosslinking may be more important than previously appreciated.

5.
Cell Rep ; 40(8): 111255, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001973

RESUMO

Persistent endoplasmic reticulum (ER) stress induces islet inflammation and ß cell loss. How islet inflammation contributes to ß cell loss remains uncertain. We have reported previously that chronic overnutrition-induced ER stress in ß cells causes Ripk3-mediated islet inflammation, macrophage recruitment, and a reduction of ß cell numbers in a zebrafish model. We show here that ß cell loss results from the intricate communications among ß cells, macrophages, and neutrophils. Macrophage-derived Tnfa induces cxcl8a in ß cells. Cxcl8a, in turn, attracts neutrophils to macrophage-contacted "hotspots" where ß cell loss occurs. We also show potentiation of chemokine expression in stressed mammalian ß cells by macrophage-derived TNFA. In Akita and db/db mice, there is an increase in CXCL15-positive ß cells and intra-islet neutrophils. Blocking neutrophil recruitment in Akita mice preserves ß cell mass and slows diabetes progression. These results reveal an important role of neutrophils in persistent ER stress-induced ß cell loss.


Assuntos
Células Secretoras de Insulina , Neutrófilos , Animais , Apoptose , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Mamíferos , Camundongos , Peixe-Zebra
6.
Mar Biotechnol (NY) ; 24(5): 843-855, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35943638

RESUMO

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.


Assuntos
Ictaluridae , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Ictaluridae/genética , Ictaluridae/metabolismo , Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
7.
J Endocrinol ; 251(1): 41-52, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34265742

RESUMO

The leptin system plays a crucial role in the regulation of appetite and energy homeostasis in vertebrates. While the phenotype of morbid obesity due to leptin (Lep) or leptin receptor (LEPR) loss of function is well established in mammals, evidence in fish is controversial, questioning the role of leptin as the vertebrate adipostat. Here we report on three (Lepr) loss of function (LOF) and one leptin loss of function alleles in zebrafish. In order to demonstrate that the Lepr LOF alleles cannot transduce a leptin signal, we measured socs3a transcription after i.p. leptin which is abolished by Lepr LOF. None of the Lepr/Lepa LOF alleles leads to obesity/a body growth phenotype. We explore possible reasons leading to the difference in published results and find that even slight changes in background genetics such as inbreeding siblings and cousins can lead to significant variance in growth.


Assuntos
Leptina/fisiologia , Obesidade/genética , Receptores para Leptina/fisiologia , Peixe-Zebra/genética , Adiposidade , Animais , Feminino , Mutação com Perda de Função , Masculino , Aumento de Peso
8.
Commun Biol ; 2: 326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508501

RESUMO

The kidney's inherent complexity has made identifying cell-specific pathways challenging, particularly when temporally associating them with the dynamic pathophysiology of acute kidney injury (AKI). Here, we combine renal cell-specific luciferase reporter mice using a chemoselective luciferin to guide the acquisition of cell-specific transcriptional changes in C57BL/6 background mice. Hydrogen peroxide generation, a common mechanism of tissue damage, was tracked using a peroxy-caged-luciferin to identify optimum time points for immunoprecipitation of labeled ribosomes for RNA-sequencing. Together, these tools revealed a profound impact of AKI on mitochondrial pathways in the collecting duct. In fact, targeting the mitochondria with an antioxidant, ameliorated not only hydrogen peroxide generation, but also significantly reduced oxidative stress and the expression of the AKI biomarker, LCN2. This integrative approach of coupling physiological imaging with transcriptomics and drug testing revealed how the collecting duct responds to AKI and opens new venues for cell-specific predictive monitoring and treatment.


Assuntos
Injúria Renal Aguda/genética , Imageamento Tridimensional , Isquemia/genética , Isquemia/patologia , Transcriptoma/genética , Injúria Renal Aguda/complicações , Injúria Renal Aguda/patologia , Animais , Antioxidantes/metabolismo , Túbulos Renais Coletores/lesões , Túbulos Renais Coletores/patologia , Camundongos Endogâmicos C57BL , Néfrons/metabolismo , Néfrons/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
9.
J Vis Exp ; (131)2018 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-29443028

RESUMO

The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection, this can be a slow and inefficient process in catfish. Here, a detailed protocol for microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Holtfreter's solution. Injection volume was calibrated and then guide RNAs/Cas9 targeting the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) gene and rhamnose binding lectin (RBL) gene were microinjected into the yolk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premature stop codons.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Animais , Ictaluridae , Microinjeções
10.
Antioxid Redox Signal ; 27(12): 839-854, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28657332

RESUMO

SIGNIFICANCE: Basement membranes (BMs) are sheet-like structures of specialized extracellular matrix that underlie nearly all tissue cell layers including epithelial, endothelial, and muscle cells. BMs not only provide structural support but are also critical for the development, maintenance, and repair of organs. Animal heme peroxidases generate highly reactive hypohalous acids extracellularly and, therefore, target BMs for oxidative modification. Given the importance of BMs in tissue structure and function, hypohalous acid-mediated oxidative modifications of BM proteins represent a key mechanism in normal development and pathogenesis of disease. Recent Advances: Peroxidasin (PXDN), a BM-associated animal heme peroxidase, generates hypobromous acid (HOBr) to form sulfilimine cross-links within the collagen IV network of BM. These cross-links stabilize BM and are critical for animal tissue development. These findings highlight a paradoxical anabolic role for HOBr, which typically damages protein structure leading to dysfunction. CRITICAL ISSUES: The molecular mechanism whereby PXDN uses HOBr as a reactive intermediate to cross-link collagen IV, yet avoid collateral damage to nearby BM proteins, remains unclear. FUTURE DIRECTIONS: The exact identification and functional impact of specific hypohalous acid-mediated modifications of BM proteins need to be addressed to connect these modifications to tissue development and pathogenesis of disease. As seen with the sulfilimine cross-link of collagen IV, hypohalous acid oxidative events may be beneficial in select situations rather than uniformly deleterious. Antioxid. Redox Signal. 27, 839-854.


Assuntos
Membrana Basal/metabolismo , Bromatos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Animais , Colágeno Tipo IV/metabolismo , Homeostase , Estresse Oxidativo , Peroxidasina
11.
Sci Rep ; 7: 44560, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300207

RESUMO

Matrix metalloproteinases (MMPs) are extracellular proteases that can cleave extracellular matrix and alter signaling pathways. They have been implicated in many disease states, but it has been difficult to understand the contribution of individual MMPs, as there are over 20 MMPs in vertebrates. The vertebrate MMPs have overlapping substrates, they exhibit genetic redundancy and compensation, and pharmacological inhibitors are non-specific. In contrast, there are only two MMP genes in Drosophila, DmMmp1 and DmMmp2, which makes Drosophila an attractive system to analyze the basis of MMP specificity. Previously, Drosophila MMPs have been categorized by their pericellular localization, as Mmp1 appeared to be secreted and Mmp2 appeared to be membrane-anchored, suggesting that protein localization was the critical distinction in this small MMP family. We report here that products of both genes are found at the cell surface and released into media. Additionally, we show that products of both genes contain GPI-anchors, and unexpectedly, that GPI-anchored MMPs promote cell adhesion when they are rendered inactive. Finally, by using new reagents and assays, we show that the two MMPs cleave different substrates, suggesting that this is the important distinction within this smallest MMP family.


Assuntos
Drosophila melanogaster/genética , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Animais , Adesão Celular/genética , Membrana Celular/genética , Drosophila melanogaster/enzimologia , Matriz Extracelular/enzimologia , Matriz Extracelular/genética , Metaloproteinase 1 da Matriz/química , Metaloproteinase 2 da Matriz/química , Transdução de Sinais/genética , Especificidade por Substrato
12.
Trends Genet ; 32(12): 815-827, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27836208

RESUMO

Geneticists have long sought the ability to manipulate vertebrate genomes by directly altering the information encoded in specific genes. The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease has the ability to bind single loci within vertebrate genomes and generate double-strand breaks (DSBs) at those sites. These DSBs induce an endogenous DSB repair response that results in small insertions or deletions at the targeted site. Alternatively, a template can be supplied, in which case homology-directed repair results in the generation of engineered alleles at the break site. These changes alter the function of the targeted gene facilitating the analysis of gene function. This tool has been widely adopted in the zebrafish model; we discuss the development of this system in the zebrafish and how it can be manipulated to facilitate genome engineering.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética , Peixe-Zebra/genética , Animais , Quebras de DNA de Cadeia Dupla , Deleção de Genes , Genoma , Mutagênese Insercional
13.
Proc Natl Acad Sci U S A ; 113(11): 3084-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903647

RESUMO

Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of ß-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit ß-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of ß-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals.


Assuntos
Adiposidade/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/fisiologia , Leptina/fisiologia , Receptores para Leptina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Tamanho Corporal , Peso Corporal , Contagem de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Gorduras na Dieta , Fertilidade , Teste de Tolerância a Glucose , Glicogenólise , Glicólise , Homeostase , Hiperfagia/genética , Hiperfagia/fisiopatologia , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Larva , Leptina/genética , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores para Leptina/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
14.
Diabetes ; 65(1): 96-109, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26420862

RESUMO

Increased insulin demand resulting from insulin resistance and/or overnutrition induces a compensatory increase in ß-cell mass. The physiological factors responsible for the compensation have not been fully characterized. In zebrafish, overnutrition rapidly induces compensatory ß-cell differentiation through triggering the release of a paracrine signal from persistently activated ß-cells. We identified Fgf1 signaling as a key component of the overnutrition-induced ß-cell differentiation signal in a small molecule screen. Fgf1 was confirmed as the overnutrition-induced ß-cell differentiation signal, as inactivation of fgf1 abolished the compensatory ß-cell differentiation. Furthermore, expression of human FGF1 solely in ß-cells in fgf1(-/-) animals rescued the compensatory response, indicating that ß-cells can be the source of FGF1. Additionally, constitutive secretion of FGF1 with an exogenous signal peptide increased ß-cell number in the absence of overnutrition. These results demonstrate that fgf1 is necessary and FGF1 expression in ß-cells is sufficient for the compensatory ß-cell differentiation. We further show that FGF1 is secreted during prolonged activation of cultured mammalian ß-cells and that endoplasmic reticulum stress acts upstream of FGF1 release. Thus, the recently discovered antidiabetes function of FGF1 may act partially through increasing ß-cell differentiation.


Assuntos
Diferenciação Celular/genética , Fator 1 de Crescimento de Fibroblastos/fisiologia , Células Secretoras de Insulina/metabolismo , Hipernutrição/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
PLoS One ; 9(10): e110280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329151

RESUMO

The habenular nuclei of the limbic system regulate responses, such as anxiety, to aversive stimuli in the environment. The habenulae receive inputs from the telencephalon via elaborate dendrites that form in the center of the nuclei. The kinase Ulk2 positively regulates dendritogenesis on habenular neurons, and in turn is negatively regulated by the cytoplasmic protein Kctd12. Given that the habenulae are a nexus in the aversive response circuit, we suspected that incomplete habenular dendritogenesis would have profound implications for behavior. We find that Ulk2, which interacts with Kctd12 proteins via a small proline-serine rich domain, promotes branching and elaboration of dendrites. Loss of Kctd12 results in increased branching/elaboration and decreased anxiety. We conclude that fine-tuning of habenular dendritogenesis during development is essential for appropriate behavioral responses to negative stimuli.


Assuntos
Comportamento Animal , Proteínas de Transporte de Cátions/metabolismo , Dendritos/metabolismo , Habenula/citologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Meio Ambiente , Técnicas de Silenciamento de Genes , Habenula/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
16.
Am J Physiol Endocrinol Metab ; 306(7): E799-807, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24473439

RESUMO

Insulin from islet ß-cells maintains glucose homeostasis by stimulating peripheral tissues to remove glucose from circulation. Persistent elevation of insulin demand increases ß-cell number through self-replication or differentiation (neogenesis) as part of a compensatory response. However, it is not well understood how a persistent increase in insulin demand is detected. We have previously demonstrated that a persistent increase in insulin demand by overnutrition induces compensatory ß-cell differentiation in zebrafish. Here, we use a series of pharmacological and genetic analyses to show that prolonged stimulation of existing ß-cells is necessary and sufficient for this compensatory response. In the absence of feeding, tonic, but not intermittent, pharmacological activation of ß-cell secretion was sufficient to induce ß-cell differentiation. Conversely, drugs that block ß-cell secretion, including an ATP-sensitive potassium (K ATP) channel agonist and an L-type Ca(2+) channel blocker, suppressed overnutrition-induced ß-cell differentiation. Genetic experiments specifically targeting ß-cells confirm existing ß-cells as the overnutrition sensor. First, inducible expression of a constitutively active K ATP channel in ß-cells suppressed the overnutrition effect. Second, inducible expression of a dominant-negative K ATP mutant induced ß-cell differentiation independent of nutrients. Third, sensitizing ß-cell metabolism by transgenic expression of a hyperactive glucokinase potentiated differentiation. Finally, ablation of the existing ß-cells abolished the differentiation response. Taken together, these data establish that overnutrition induces ß-cell differentiation in larval zebrafish through prolonged activation of ß-cells. These findings demonstrate an essential role for existing ß-cells in sensing overnutrition and compensating for their own insufficiency by recruiting additional ß-cells.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Células Secretoras de Insulina/fisiologia , Hipernutrição/fisiopatologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Canais de Cálcio Tipo L/fisiologia , Contagem de Células , Embrião não Mamífero , Glucoquinase/genética , Células Secretoras de Insulina/citologia , Canais KATP/fisiologia , Larva , Potenciais da Membrana/fisiologia , Hipernutrição/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética
17.
Proc Natl Acad Sci U S A ; 109(38): 15389-94, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22908272

RESUMO

Conditional mutations are essential for determining the stage- and tissue-specific functions of genes. Here we achieve conditional mutagenesis in zebrafish using FT1, a gene-trap cassette that can be stably inverted by both Cre and Flp recombinases. We demonstrate that intronic insertions in the gene-trapping orientation severely disrupt the expression of the host gene, whereas intronic insertions in the neutral orientation do not significantly affect host gene expression. Cre- and Flp-mediated recombination switches the orientation of the gene-trap cassette, permitting conditional rescue in one orientation and conditional knockout in the other. To illustrate the utility of this system we analyzed the functional consequence of intronic FT1 insertion in supv3l1, a gene encoding a mitochondrial RNA helicase. Global supv311 mutants have impaired mitochondrial function, embryonic lethality, and agenesis of the liver. Conditional rescue of supv311 expression in hepatocytes specifically corrected the liver defects. To test whether the liver function of supv311 is required for viability we used Flp-mediated recombination in the germline to generate a neutral allele at the locus. Subsequently, tissue-specific expression of Cre conditionally inactivated the targeted locus. Hepatocyte-specific inactivation of supv311 caused liver degeneration, growth retardation, and juvenile lethality, a phenotype that was less severe than the global disruption of supv311. Thus, supv311 is required in multiple tissues for organismal viability. Our mutagenesis approach is very efficient and could be used to generate conditional alleles throughout the zebrafish genome. Furthermore, because FT1 is based on the promiscuous Tol2 transposon, it should be applicable to many organisms.


Assuntos
Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Alelos , Animais , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis , Hepatócitos/citologia , Integrases/metabolismo , Fígado/metabolismo , Fígado/patologia , Mitocôndrias/enzimologia , Modelos Genéticos , Mutagênese , Mutagênicos , Mutação , Fenótipo , Reação em Cadeia da Polimerase/métodos , RNA Helicases/metabolismo , Recombinação Genética
18.
J Neurosci ; 30(26): 8759-68, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592197

RESUMO

Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing vesicles are transported to the outer segment. The continuous replacement of the outer segments imposes a significant biosynthetic and trafficking burden on the photoreceptors. Here, we show that Ahi1, a gene that when mutated results in the neurodevelopmental disorder, Joubert syndrome (JBTS), is required for photoreceptor sensory cilia formation and the development of photoreceptor outer segments. In mice with a targeted deletion of Ahi1, photoreceptors undergo early degeneration. Whereas synaptic proteins are correctly trafficked, photoreceptor outer segment proteins fail to be transported appropriately or are significantly reduced in their expression levels (i.e., transducin and Rom1) in Ahi1(-/-) mice. We show that vesicular targeting defects in Ahi1(-/-) mice are cilium specific, and our evidence suggests that the defects are caused by a decrease in expression of the small GTPase Rab8a, a protein required for accurate polarized vesicular trafficking. Thus, our results suggest that Ahi1 plays a role in stabilizing the outer segment proteins, transducin and Rom1, and that Ahi1 is an important component of Rab8a-mediated vesicular trafficking in photoreceptors. The retinal degeneration observed in Ahi1(-/-) mice recapitulates aspects of the retinal phenotype observed in patients with JBTS and suggests the importance of Ahi1 in photoreceptor function.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Degeneração Retiniana/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encefalopatias , Cílios/metabolismo , Proteínas do Olho/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Retina/metabolismo , Vesículas Sinápticas/metabolismo , Síndrome , Tetraspaninas , Transducina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1288-97, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20130228

RESUMO

Central regulation of cardiac output via the sympathetic and parasympathetic branches of the autonomic nervous system allows the organism to respond to environmental changes. Sudden onset stimuli, startle stimuli, are useful probes to study central regulatory responses to the environment. In mammals, startle stimuli induce a transient bradycardia that habituates with repeated stimulation. Repeated presentation of the stimulus results in tachycardia. In this study, we investigate the behavioral regulation of heart rate in response to sudden stimuli in the zebrafish. Larval zebrafish show a stereotyped heart rate response to mild electrical shock. Naïve fish show a significant increase in interbeat interval that resolves in the 2 s following stimulation. This transient bradycardia decreases on repeated exposure to the stimulus. Following repeated stimulation, the fish become tachycardic within 1 min of stimulation. Both the transient bradycardia and following tachycardia responses are blocked with administration of the ganglionic blocker hexamethonium, demonstrating that these responses are mediated centrally. The transient bradycardia is blocked by the muscarinic antagonist atropine, suggesting that this response is mediated by the parasympathetic system, while the following tachycardia is specifically blocked by the beta-adrenergic antagonist propranolol, suggesting that this response is mediated by the sympathetic nervous system. Together, these results demonstrate that at the larval stage, zebrafish actively regulate cardiac output to changes in their environment using both the parasympathetic and sympathetic branches of the autonomic nervous system, a behavioral response that is markedly similar to that observed in mammals to similar sudden onset stimuli.


Assuntos
Coração/inervação , Larva/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Reflexo de Sobressalto/fisiologia , Sistema Nervoso Simpático/fisiologia , Peixe-Zebra/fisiologia , Animais , Bradicardia/etiologia , Bradicardia/fisiopatologia , Coração/embriologia , Frequência Cardíaca/fisiologia , Modelos Animais , Sistema Nervoso Parassimpático/embriologia , Sistema Nervoso Simpático/embriologia , Taquicardia/etiologia , Taquicardia/fisiopatologia , Peixe-Zebra/embriologia
20.
Hum Mol Genet ; 18(20): 3926-41, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19625297

RESUMO

The primary non-motile cilium, a membrane-ensheathed, microtubule-bundled organelle, extends from virtually all cells and is important for development. Normal functioning of the cilium requires proper axoneme assembly, membrane biogenesis and ciliary protein localization, in tight coordination with the intraflagellar transport system and vesicular trafficking. Disruptions at any level can induce severe alterations in cell function, giving rise to a myriad of human genetic diseases known as ciliopathies. Here we show that the Abelson helper integration site 1 (Ahi1) gene, whose human ortholog is mutated in Joubert syndrome, regulates cilium formation via its interaction with Rab8a, a small GTPase critical for polarized membrane trafficking. We find that the Ahi1 protein localizes to a single centriole, the mother centriole, which becomes the basal body of the primary cilium. In order to determine whether Ahi1 functions in ciliogenesis, loss of function analysis of Ahi1 was performed in cell culture models of ciliogenesis. Knockdown of Ahi1 expression by shRNAi in cells or targeted deletion of Ahi1 (Ahi1 knockout mouse) leads to impairments in ciliogenesis. In Ahi1-knockdown cells, Rab8a is destabilized and does not properly localize to the basal body. Since Rab8a is implicated in vesicular trafficking, we next examined this process in Ahi1-knockdown cells. Defects in the trafficking of endocytic vesicles from the plasma membrane to the Golgi and back to the plasma membrane were observed in Ahi1-knockdown cells. Overall, our data indicate that the distribution and functioning of Rab8a is regulated by Ahi1, not only affecting cilium formation, but also vesicle transport.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cílios/metabolismo , Mutação , Doenças do Sistema Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Linhagem Celular , Células Cultivadas , Cílios/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/genética , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...