Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Syst Rehabil Eng ; 25(12): 2355-2364, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28858807

RESUMO

On the quest to bring function of prosthetic legs closer to their biological counterparts, the intuitive interplay of their control with the user's impedance modulation is key. We present two control features to enable more physiological and more user-adaptive control of prosthetic legs: a neuromusculoskeletal impedance model ( ) including a reflexive component, and a human model reference adaptive controller ( ), which can be combined with the former. In stance-phase simulations, the allowed to control a prosthetic leg with physiological knee joint angle and moment. When perturbations were applied, the reduced the resulting root mean square error (RMSE) between simulated and physiological reference angle by 96%. In a pilot experiment with two unimpaired and one amputee subject, gait with the deviated more from a physiological reference than with a conventional visco-elastic impedance controller. Subjects, however, preferred the . When adding the to either of the two impedance controllers, the RMSE between the actual and the physiological reference angle was reduced by up to 54%. Subjects confirmed this finding and reported an easier stance-to-swing transition. Simulation and pilot experiment suggest that a reflex-based impedance controller combined with an adaptive controller may improve user-cooperative behavior of active knee exoprostheses.


Assuntos
Exoesqueleto Energizado , Prótese do Joelho , Adulto , Algoritmos , Amputados , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Feminino , Marcha/fisiologia , Humanos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Desenho de Prótese , Viscosidade , Caminhada/fisiologia
2.
Med Biol Eng Comput ; 54(10): 1579-89, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26718557

RESUMO

Despite recent advances in leg prosthetics, transfemoral amputees still experience limitations in postural control and gait symmetry. It has been hypothesized that artificial sensory information might improve the integration of the prosthesis into the human sensory-motor control loops and, thus, reduce these limitations. In three transfemoral amputees, we investigated the effect of Electrotactile Moving Sensation for Sensory Augmentation (EMSSA) without training and present preliminary findings. Experimental conditions included standing with open/closed eyes on stable/unstable ground as well as treadmill walking. For standing conditions, spatiotemporal posturographic measures and sample entropy were derived from the center of pressure. For walking conditions, step length and stance duration were calculated. Conditions without feedback showed effects congruent with findings in the literature, e.g., asymmetric weight bearing and step length, and validated the collected data. During standing, with EMSSA a tendency to influence postural control in a negative way was found: Postural control was less effective and less efficient and the prosthetic leg was less involved. Sample entropy tended to decrease, suggesting that EMSSA demanded increased attention. During walking, with EMSSA no persistent positive effect was found. This contrasts the positive subjective assessment and the positive effect on one subject's step length.


Assuntos
Amputados , Fêmur/cirurgia , Marcha , Postura , Humanos
3.
J Neuroeng Rehabil ; 12: 1, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557982

RESUMO

: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os--not as independent devices, but as actors within an ecosystem--is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.


Assuntos
Extremidade Inferior , Aparelhos Ortopédicos , Próteses e Implantes , Desenho de Prótese/métodos , Atividades Cotidianas , Eletromiografia , Marcha , Humanos , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...