Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1067: 109-131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29411335

RESUMO

Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.


Assuntos
Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Peptídeos Natriuréticos/metabolismo , Biomarcadores/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Receptores de Peptídeos/metabolismo
2.
Endocr Rev ; 31(1): 25-51, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19861693

RESUMO

Multiple organs contribute to the development of peripheral insulin resistance, with the major contributors being skeletal muscle, liver, and adipose tissue. Because insulin resistance usually precedes the development of type 2 diabetes mellitus (T2DM) by many years, understanding the pathophysiology of insulin resistance should enable development of therapeutic strategies to prevent disease progression. Some subjects with mitochondrial genomic variants/defects and a subset of lean individuals with hereditary predisposition to T2DM exhibit skeletal muscle mitochondrial dysfunction early in the course of insulin resistance. In contrast, in the majority of subjects with T2DM the plurality of evidence implicates skeletal muscle mitochondrial dysfunction as a consequence of perturbations associated with T2DM, and these mitochondrial deficits then contribute to subsequent disease progression. We review the affirmative and contrarian data regarding skeletal muscle mitochondrial biology in the pathogenesis of insulin resistance and explore potential therapeutic options to intrinsically modulate mitochondria as a strategy to combat insulin resistance. Furthermore, an overview of restricted molecular manipulations of skeletal muscle metabolic and mitochondrial biology offers insight into the mitochondrial role in metabolic substrate partitioning and in promoting innate adaptive and maladaptive responses that collectively regulate peripheral insulin sensitivity. We conclude that skeletal muscle mitochondrial dysfunction is not generally a major initiator of the pathophysiology of insulin resistance, although its dysfunction is integral to this pathophysiology and it remains an intriguing target to reverse/delay the progressive perturbations synonymous with T2DM.


Assuntos
Resistência à Insulina , Síndrome Metabólica/fisiopatologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Síndrome Metabólica/prevenção & controle , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/terapia , Especificidade de Órgãos , Estado Pré-Diabético/fisiopatologia
3.
J Biol Chem ; 283(33): 22464-72, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18579525

RESUMO

The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.


Assuntos
Insulina/fisiologia , Mitocôndrias Musculares/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Transativadores/genética , Animais , Linhagem Celular , DNA Mitocondrial/genética , Metabolismo Energético , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Pioglitazona , RNA/genética , RNA/isolamento & purificação , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Transdução de Sinais/fisiologia , Tiazolidinedionas/farmacologia , Transativadores/biossíntese , Transativadores/metabolismo , Fatores de Transcrição
4.
Am J Physiol Heart Circ Physiol ; 293(5): H2659-66, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17890427

RESUMO

Skeletal muscle mitochondrial dysfunction is hypothesized to contribute to the pathophysiology of insulin resistance and Type 2 diabetes. Whether thiazolidinedione therapy enhances skeletal muscle mitochondrial function as a component of its insulin-sensitizing effect is unknown. To test this, we evaluated skeletal muscle mitochondria and exercise capacity in Type 2 diabetic subjects with otherwise normal cardiopulmonary function in response to rosiglitazone therapy. Twenty-three subjects were treated for 12 wk and underwent pre- and posttherapy metabolic stress testing and skeletal muscle biopsies. Rosiglitazone significantly ameliorated fasting glucose, insulin, and free fatty acid levels but did not augment the subjects' maximal oxygen consumption (Vo(2max)) or their skeletal muscle mitochondrial copy number. The baseline Vo(2max) correlated strongly with muscle mitochondrial copy number (r = 0.56, P = 0.018, n = 17) and inversely with the duration of diabetes (r = -0.67, P = 0.004, n = 23). Despite the global lack of effect of rosiglitazone-mediated insulin sensitization on skeletal muscle mitochondria, subjects with the most preserved functional capacity demonstrated some plasticity in their mitochondria biology as evidenced by an upregulation of electron transfer chain proteins and in citrate synthase activity. This study demonstrates that the augmentation of skeletal muscle mitochondrial electron transfer chain content and/or bioenergetics is not a prerequisite for rosiglitazone-mediated improved insulin sensitivity. Moreover, in diabetic subjects, Vo(2max) reflects the duration of diabetes and skeletal muscle mitochondrial content. It remains to be determined whether longer-term insulin sensitization therapy with rosiglitazone will augment skeletal muscle mitochondrial bioenergetics in those diabetic subjects with relatively preserved basal aerobic capacity.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Esforço Físico , Tiazolidinedionas/administração & dosagem , Diabetes Mellitus Tipo 2/patologia , Teste de Esforço , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Rosiglitazona , Vasodilatadores/administração & dosagem
5.
J Mol Med (Berl) ; 85(8): 797-810, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17429599

RESUMO

Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.


Assuntos
Cardiomegalia/fisiopatologia , Fenômenos Fisiológicos Cardiovasculares , Guanilato Ciclase/fisiologia , Receptores do Fator Natriurético Atrial/fisiologia , Transdução de Sinais , Animais , Cardiomegalia/metabolismo , Sistema Cardiovascular/metabolismo , Guanilato Ciclase/metabolismo , Humanos , Modelos Biológicos , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/fisiologia , Receptores do Fator Natriurético Atrial/metabolismo
6.
Proc Natl Acad Sci U S A ; 103(12): 4735-40, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16537417

RESUMO

Natriuretic peptides (NP) mediate their effects by activating membrane-bound guanylyl cyclase-coupled receptors A (NPR-A) or B (NPR-B). Whereas the pathophysiological role of NPR-A has been widely studied, only limited knowledge on the cardiovascular function of NPR-B is available. In vitro studies suggest antiproliferative and antihypertrophic actions of the NPR-B ligand C-type NP (CNP). Because of the lack of a specific pharmacological inhibitor, these effects could not clearly be attributed to impaired NPR-B signaling. Recently, gene deletion revealed a predominant role of NPR-B in endochondral ossification and development of female reproductive organs. However, morphological abnormalities and premature death of NPR-B-deficient mice preclude detailed cardiovascular phenotyping. In the present study, a dominant-negative mutant (NPR-BDeltaKC) was used to characterize CNP-dependent NPR-B signaling in vitro and in transgenic rats. Here we demonstrate that reduced CNP- but not atrial NP-dependent cGMP response attenuates antihypertrophic potency of CNP in vitro. In transgenic rats, NPR-BDeltaKC expression selectively reduced NPR-B but not NPR-A signaling. NPR-BDeltaKC transgenic rats display progressive, blood pressure-independent cardiac hypertrophy and elevated heart rate. The hypertrophic phenotype is further enhanced in chronic volume overload-induced congestive heart failure. Thus, this study provides evidence linking NPR-B signaling to the control of cardiac growth.


Assuntos
Genes Dominantes , Guanilato Ciclase/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Receptores do Fator Natriurético Atrial/genética , Animais , Animais Geneticamente Modificados , Pressão Sanguínea/genética , Desenvolvimento Ósseo/genética , GMP Cíclico/metabolismo , Frequência Cardíaca/genética , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Rim/fisiologia , Mutação , Peptídeo Natriurético Tipo C/farmacologia , Ratos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...