Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 559: 245-254, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30699365

RESUMO

The aim of this study was to evaluate the choice of polymer and polymer level on the performance of the microstructure and wettability of hot-melt extruded solid dispersion of Glyburide (Gly) as a model drug. The produced solid dispersion were characterised using scanning electron microscopy (SEM), image analysis using a focus variation instrument (FVI), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), X-ray microtomography (XµT), dynamic contact angle measurement and dissolution analysis using biorelevant dissolution media (FASSIF). SEM and focus variation analysis showed that the microstructure and surface morphology was significantly different between samples produced. This was confirmed by further analysis using XµT which showed that an increase in polymer content brought about a decrease in the porosity of the hot-melt extruded dispersions. DSC suggested complete amorphorisation of Gly whereas XRPD suggested incomplete amorphorisation. The static and dynamic contact angle measurement correlated with the dissolution studies using FASSIF media indicating that the initial liquid imbibition process as captured by the dynamic contact angle directly affects the dissolution performance.


Assuntos
Glibureto/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Congelamento , Temperatura Alta , Polietilenoglicóis/química , Polivinil/química , Pós/química , Solubilidade , Molhabilidade , Difração de Raios X/métodos
2.
J Pharm Sci ; 106(8): 2009-2014, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28435141

RESUMO

Polymorphism in active pharmaceutical ingredients can be regarded as critical for the potential that crystal form can have on the quality, efficacy, and safety of the final drug product. The current contribution aims to characterize thermodynamic interrelationship of a dimorphic co-crystal, FI and FII, involving carbamazepine (CBZ) and saccharin (SAC) molecules. Supramolecular synthesis of CBZ-SAC FI and FII has been performed using thermokinetic methods and systematically characterized by differential scanning calorimetry, powder X-ray diffraction, solubility, and slurry measurements. According to the heat of fusion rule by Burger and Ramberger, FI (ΔHfus = 121.1 J/g; melting point, 172.5°C) and FII (ΔHfus = 110.3 J/g; melting point, 164.7°C) are monotropically related. The solubility and van't Hoff plot results suggest FI stable and FII metastable forms. This study reveals that CBZ-SAC co-crystal phases, FI or FII, could be stable to heat-induced stresses; however, FII converts to FI during solution-mediated transformation.


Assuntos
Anticonvulsivantes/química , Carbamazepina/química , Sacarina/química , Edulcorantes/química , Varredura Diferencial de Calorimetria , Cristalização , Solubilidade , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...