Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079628

RESUMO

Understanding how fertilizer application (particularly N, the most used chemical fertilizer worldwide) interacts with soil microbes is important for the development of best management practices that target improved microbial activity to enhance sustainable food production. This study was conducted to determine whether urea N rate and time of application to maize (Zea mays) influenced soil enzyme activity. Enzyme activity was determined by monitoring fluorescein diacetate (FDA) hydrolysis, ß-glucosidase, acid-phosphomonoesterase, and arylsulfatase activities. Experiments were conducted from 2014 through 2016 to compare single (fall or spring applications) and split applications of N at varying N rates under irrigation (Becker) and rainfed conditions (Lamberton and Waseca) in MN, USA. Nitrogen rates varied by location and were based on University of Minnesota guidelines. Soil samples were collected seven times each season. Nitrogen application split into two applications increased FDA activity by 10% compared with fall and spring applied N at Waseca. Fall or spring N application decreased arylsulfatase activity by 19% at Becker and by between 13% and 16% at Lamberton. ß-Glucosidase and acid-phosphomonoesterase activities were unaffected by N application. Sampling time and year had the greatest impact on enzyme activity, but the results varied by location. A negative linear relationship occurred between FDA and ß-glucosidase activity at all three sites. In summary, urea N application had small effects on enzyme activity at the sites studied, suggesting that some form of organic N could be more important than the ammonium provided by urea.

2.
Sci Rep ; 12(1): 1985, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132132

RESUMO

Corn stover is a global resource used in many industrial sectors including bioenergy, fuel, and livestock operations. However, stover removal can negatively impact soil nutrient availability, especially nitrogen (N) and phosphorus (P), biological activity, and soil health. We evaluated the effects of corn stover management combined with N and P fertilization on soil quality, using soil chemical (nitrate, ammonium and Bray-1 P) and biological parameters (ß-glucosidase, alkaline phosphatase, arylsulfatase activities and fluorescein diacetate hydrolysis-FDA). The experiment was performed on a Mollisol (Typic Endoaquoll) in a continuous corn system from 2013 to 2015 in Minnesota, USA. The treatments tested included six N rates (0 to 200 kg N ha-1), five P rates (0 to 100 kg P2O5 ha-1), and two residue management strategies (residue removed or incorporated) totalling 60 treatments. Corn stover management significantly impacted soil mineral-N forms and enzyme activity. In general, plots where residue was incorporated were found to have high NH4+ and enzyme activity compared to plots where residue was removed. In contrast, fields where residue was removed showed higher NO3- than plots where residue was incorporated. Residue management had little effect on soil available P. Soil enzyme activity was affected by both nutrient and residue management. In most cases, activity of the enzymes measured in plots where residue was removed frequently showed a positive response to added N and P. In contrast, soil enzyme responses to applied N and P in plots where residue was incorporated were less evident. Soil available nutrients tended to decrease in plots where residue was removed compared with plots where residue was incorporated. In conclusion, stover removal was found to have significant potential to change soil chemical and biological properties and caution should be taken when significant amounts of stover are removed from continuous corn fields. The residue removal could decrease different enzymes related to C-cycle (ß-glucosidase) and soil microbial activity (FDA) over continuous cropping seasons, impairing soil health.


Assuntos
Agricultura/métodos , Fertilizantes , Nutrientes , Solo/química , Zea mays , Fosfatase Alcalina , Compostos de Amônio , Arilsulfatases , Hidrólise , Minnesota , Nitratos , Nitrogênio , Fósforo , Microbiologia do Solo , beta-Glucosidase
3.
PLoS One ; 15(5): e0233674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469984

RESUMO

Timing and rate of nitrogen (N) fertilizer application can influence maize (Zea mays L.) grain yield, N uptake, and nitrogen use efficiency (NUE) parameters, but results have been inconsistent across the upper Midwest. This study compared single (fall and preplant) and split applications of differing N rates for maize under irrigated conditions on loamy sand at Becker, MN and under rainfed conditions on loam and clay loam soils at Lamberton, MN and Waseca, MN, respectively, in 2014 to 2016. Fall and preplant applications of N were applied at recommended and 125% of recommended rates (RN) according to University of Minnesota guidelines. Split-application treatments included a two-way (Sp, applied at 75% and 100% of RN) and a three-way split (TSp applied at 50%, 75%, and 100% of RN), with the total N rate equally split among application times. At Becker, maize grain yield with TSp was 12.6 to 15.7 Mg ha-1 among years and significantly greater than that with fall or preplant treatments. The TSp treatment also improved agronomic efficiency (AE) and recovery efficiency (RE) by an average of 30% over fall or preplant treatments. At Lamberton, maize grain yield, AE and RE did not differ among treatments. However, TSp75 improved AE by 8.3 kg kg-1 while producing comparable yields to fall and preplant treatments. At Waseca, Sp or TSp improved grain yield and AE compared with fall treatments. These results suggest that split applications of N can increase maize grain yield, AE, and RE on irrigated coarse-textured soils and applying N fertilizer near planting or as a split application can improve N management on non-irrigated clay loam soils.


Assuntos
Produção Agrícola/métodos , Fertilizantes , Nitrogênio , Zea mays/crescimento & desenvolvimento , Irrigação Agrícola , Fertilizantes/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Chuva , Solo/química , Zea mays/metabolismo
4.
Sci Rep ; 5: 17967, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647644

RESUMO

Sequential fractionation has helped improving our understanding of the lability and bioavailability of P in soil. Nevertheless, there have been no reports on how manipulation of the different fractions prior to analyses affects the total P (TP) concentrations measured. This study investigated the effects of sample digestion, filtration, and acidification on the TP concentrations determined by ICP-OES in 20 soil samples. Total P in extracts were either determined without digestion by ICP-OES, or ICP-OES following block digestion, or autoclave digestion. The effects of sample filtration, and acidification on undigested alkaline extracts prior to ICP-OES were also evaluated. Results showed that, TP concentrations were greatest in the block-digested extracts, though the variability introduced by the block-digestion was the highest. Acidification of NaHCO3 extracts resulted in lower TP concentrations, while acidification of NaOH randomly increased or decreased TP concentrations. The precision observed with ICP-OES of undigested extracts suggests this should be the preferred method for TP determination in sequentially extracted samples. Thus, observations reported in this work would be helpful in appropriate sample handling for P determination, thereby improving the precision of P determination. The results are also useful for literature data comparison and discussion when there are differences in sample treatments.


Assuntos
Fósforo/química , Solo/química , Carbonatos/química , Fracionamento Químico , Filtração
5.
J Environ Qual ; 41(3): 901-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565271

RESUMO

The most viable way to beneficially use animal manure on most farms is land application. Over the past few decades, repeated manure application has shown adverse effects on environmental quality due to phosphorus (P) runoff with rainwater, leading to eutrophication of aquatic ecosystems. Improved understanding of manure P chemistry may reduce this risk. In this research, 42 manure samples from seven animal species (beef and dairy cattle, swine, chicken, turkey, dairy goat, horse, and sheep) were sequentially fractionated with water, NaHCO3, NaOH, and HCl. Inorganic (P(i)), organic (P(o)), enzymatic hydrolyzable (P(e); monoester-, DNA-, and phytate-like P), and nonhydrolyzable P were measured in each fraction. Total dry ash P (P(t)) was measured in all manures. Total fractionated P (P(ft)) and total P(i) (P(it)) showed a strong linear relationship with P(t). However, the ratios between P(ft)/P(t) and P(it)/P(t) varied from 59 to 117% and from 28 to 96%, respectively. Water and NaHCO3 extracted most of the P(i) in manure from ruminant+horse, whereas in nonruminant species a large fraction of manure P was extracted in the HCl fraction. Manure P(e) summed over all fractions (P(et)) accounted for 41 to 69% of total P(0) and 4 to 29% of P(t). The hydrolyzable pool in the majority of the manures was dominated by phytate- and DNA-like P in water, monoester- and DNA-like P in NaHCO3, and monoester- and phytate-like P in NaOH and HCl fractions. In conclusion, if one assumes that the P(et) and P(it) from the fractionation can become bioavailable, then from 34 to 100% of P(t) in animal manure would be bioavailable. This suggests the need for frequent monitoring of manure P for better manure management practices.


Assuntos
Esterco/análise , Fósforo/química , Animais , Gado
6.
J Environ Qual ; 39(1): 282-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048316

RESUMO

Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.


Assuntos
Fertilizantes/análise , Fósforo/química , Poa/fisiologia , Movimentos da Água , Poluentes Químicos da Água/química , Agricultura , Monitoramento Ambiental , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...