Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(17): 171101, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978220

RESUMO

We analyze the high-energy neutrino events observed by IceCube, aiming to probe the initial flavor of cosmic neutrinos. We study the track-to-shower ratio of the subset with energy above 60 TeV, where the signal is expected to dominate, and show that different production mechanisms give rise to different predictions even accounting for the uncertainties due to neutrino oscillations. We include for the first time the passing muons observed by IceCube in the analysis. They corroborate the hypotheses that cosmic neutrinos have been seen and their flavor matches expectations derived from the neutrino oscillations.

2.
Phys Rev Lett ; 111(2): 022001, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889387

RESUMO

The study of the neutral current elastic scattering of neutrinos on protons at lower energies can be used as a compelling probe to improve our knowledge of the strangeness of the proton. We consider a neutrino beam generated from pion decay at rest, as provided by a cyclotron or a spallation neutron source and a 1 kton scintillating detector with a potential similar to the Borexino detector. Despite several backgrounds from solar and radioactive sources, it is possible to estimate two optimal energy windows for the analysis, one between 0.65 and 1.1 MeV and another between 1.73 and 2.2 MeV. The expected number of neutral current events in these two regions, for an exposure of 1 yr, is enough to obtain an error on the strange axial charge 10 times smaller than available at present.

3.
Phys Rev Lett ; 103(3): 031102, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19659263

RESUMO

Exploiting an improved analysis of the nue signal from the explosion of a galactic core collapse supernova, we show that it is possible to identify within about 10 ms the time of the bounce, which is strongly correlated to the time of the maximum amplitude of the gravitational signal. This allows us to precisely identify the gravitational wave burst timing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...