Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 196(1): 129-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103733

RESUMO

In this study, the potential of bagasse pith (the waste of sugar and paper industry) was investigated for bio-xylitol production for the first time. Xylose-rich hydrolysate was prepared using 8% dilute sulfuric acid, at 120 °C for 90 min. Then, the acid-hydrolyzed solution was detoxified by individual overliming (OL), active carbon (AC), and their combination (OL+AC). The amounts of reducing sugars and inhibitors (furfural and hydroxyl methyl furfural) were measured after acid pre-treatment and detoxification process. Thereafter, xylitol was produced from detoxified hydrolysate by Rhodotorula mucilaginosa yeast. Results showed that after acid hydrolysis, the sugar yield was 20%. Detoxification by overliming and active carbon methods increased the reducing sugar content up to 65% and 36% and decreased the concentration of inhibitors to >90% and 16%, respectively. Also, combined detoxification caused an increase in the reducing sugar content (>73%) and a complete removal of inhibitors. The highest productivity of xylitol (0.366 g/g) by yeast was attained after the addition of 100 g/l non-detoxified xylose-rich hydrolysate into fermentation broth after 96 h, while the xylitol productivity enhanced to 0.496 g/g after adding the similar amount of xylose-rich hydrolysate detoxified by combined method (OL+AC2.5%).


Assuntos
Celulose , Rhodotorula , Xilitol , Xilose , Furaldeído , Leveduras , Carvão Vegetal , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...