Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 103: 103786, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500987

RESUMO

Animal bones are commonly used to test the mechanical competence of bone screws since they are easier to obtain compared to human bones. Nevertheless, selecting an appropriate animal sample that correctly represents the human bone architecture where the screw is implanted is frequently overlooked. This study presents a protocol for bone sample selection for screw mechanical testing based on a characterization of the local CT-derived bone morphology. For this, 36 human radii were used to quantify the local peri-implant bone morphology of 360 osteosynthesis screws, 10 per bone, whose implantation site and depth were fully known. A cylindrical volume of interest was created along the screw path and used to measure the local morphology. With this, 10 average peri-implant bone morphologies were defined. Additionally, two animal models, pig, and sheep, were selected and used as potential sample sources. From each model, six bones were selected for analysis. Based on a surface mesh of each bone a computational algorithm was created to automatically extract cylindrical probes in several locations from which the local bone morphometry was calculated. A multi-parametric bone similarity score was developed and used to compare the local morphology of each animal bone to that of the human average peri-implant bone morphology. The score was then mapped to the surface of the bone thus allowing to visually identify regions on the animal bone with human-like bone morphology. By using this methodology, the use of human bones can be avoided since samples with human-like bone morphologies can be found on animal bones. This is not only useful in cases where strict ethical constrains must be fulfilled, but also in studies where the relationship between morphology and screw competence is to be studied, something that is hard to replicate with commercially available synthetic alternatives.


Assuntos
Ortopedia , Rádio (Anatomia) , Animais , Parafusos Ósseos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Ovinos , Suínos , Tomografia Computadorizada por Raios X
2.
Med Eng Phys ; 59: 36-42, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30131112

RESUMO

Hip fractures are one of the most severe consequences of osteoporosis. Compared to the clinical standard of DXA-based aBMD at the femoral neck, QCT-based FEA delivers a better surrogate of femoral strength and gains acceptance for the calculation of hip fracture risk when a CT reconstruction is available. Isotropic, homogenised voxel-based, finite element (hvFE) models are widely used to estimate femoral strength in cross-sectional and longitudinal clinical studies. However, fabric anisotropy is a classical feature of the architecture of the proximal femur and the second determinant of the homogenised mechanical properties of trabecular bone. Due to the limited resolution, fabric anisotropy cannot be derived from clinical CT reconstructions. Alternatively, fabric anisotropy can be extracted from HR-pQCT images of cadaveric femora. In this study, fabric anisotropy from HR-pQCT images was mapped onto QCT-based hvFE models of 71 human proximal femora for which both HR-pQCT and QCT images were available. Stiffness and ultimate load computed from anisotropic hvFE models were compared with previous biomechanical tests in both stance and side-fall configurations. The influence of using the femur-specific versus a mean fabric distribution on the hvFE predictions was assessed. Femur-specific and mean fabric enhance the prediction of experimental ultimate force for the pooled, i.e. stance and side-fall, (isotropic: r2=0.81, femur-specific fabric: r2=0.88, mean fabric: r2=0.86,p<0.001) but not for the individual configurations. Fabric anisotropy significantly improves bone strength prediction for the pooled configurations, and mapped fabric provides a comparable prediction to true fabric. The mapping of fabric anisotropy is therefore expected to help generate more accurate QCT-based hvFE models of the proximal femur for personalised or multiple load configurations.


Assuntos
Análise de Elementos Finitos , Quadril/diagnóstico por imagem , Quadril/fisiologia , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Suporte de Carga
3.
J Biomech ; 49(14): 3423-3429, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27653376

RESUMO

The extensor mechanism is a tendinous network connecting intrinsic and extrinsic muscles of the finger and its function has not yet been fully understood. The goal of this study was to assess the effect of the extensor mechanism on the maximum isometric fingertip forces - a parameter which is essential for grasping. For this purpose, maximum fingertip forces in all directions (i.e. feasible force sets) of two musculoskeletal models of the index finger were compared: the wEM model included a full representation of the extensor mechanism, whereas in the noEM model the extensor mechanism was replaced by a single extensor tendon without connectivity to intrinsic muscles. The feasible force sets were computed in the flexion-extension plane for nine postures. Forces in four predefined directions (palmar, proximal, dorsal, and distal), and the peak resultant forces were evaluated. Averaged forces in all four predefined directions were considerably larger in the wEM model (+187.6%). However, peak resultant forces were slightly lower in the wEM model (-4.3% on average). The general advantage of the wEM model could be explained by co-contraction of intrinsic and extrinsic extensor muscles which allowed reaching larger activation levels of the extrinsic flexors. Only within a narrow range of force directions the co-contraction of intrinsic muscles limited the fingertip forces and lead to lower peak resultant forces in the wEM model. Rather than maximizing peak resultant forces, it appears that the extensor mechanism is a sophisticated tool for increasing maximum fingertip forces over a broad range of postures and force directions - making the finger more versatile during grasping.


Assuntos
Dedos/fisiologia , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Força da Mão , Humanos , Músculo Esquelético/fisiologia , Postura , Tendões/fisiologia
4.
Biomech Model Mechanobiol ; 15(5): 1043-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26517986

RESUMO

Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7-72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient [Formula: see text]. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.


Assuntos
Osso Esponjoso/fisiologia , Fêmur/fisiologia , Idoso , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Dinâmica não Linear , Estresse Mecânico
5.
J Biomech ; 48(15): 4116-4123, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26542787

RESUMO

Continuum-level finite element (FE) models can be used to analyze and improve osteosynthesis procedures for distal radius fractures (DRF) from a biomechanical point of view. However, previous models oversimplified the bone material and lacked thorough experimental validation. The goal of this study was to assess the influence of local bone density and anisotropy in FE models of DRF osteosynthesis for predictions of axial stiffness, implant plate stresses, and screw loads. Experiments and FE analysis were conducted in 25 fresh frozen cadaveric radii with DRFs treated by volar locking plate osteosynthesis. Specimen specific geometries were captured using clinical quantitative CT (QCT) scans of the prepared samples. Local bone material properties were computed based on high resolution CT (HR-pQCT) scans of the intact radii. The axial stiffness and individual screw loads were evaluated in FE models, with (1) orthotropic inhomogeneous (OrthoInhom), (2) isotropic inhomogeneous (IsoInhom), and (3) isotropic homogeneous (IsoHom) bone material and compared to the experimental axial stiffness and screw-plate interface failures. FE simulated and experimental axial stiffness correlated significantly (p<0.0001) for all three model types. The coefficient of determination was similar for OrthoInhom (R(2)=0.807) and IsoInhom (R(2)=0.816) models but considerably lower for IsoHom models (R(2)=0.500). The peak screw loads were in qualitative agreement with experimental screw-plate interface failure. Individual loads and implant plate stresses of IsoHom models differed significantly (p<0.05) from OrthoInhom and IsoInhom models. In conclusion, including local bone density in FE models of DRF osteosynthesis is essential whereas local bone anisotropy hardly effects the models׳ predictive abilities.


Assuntos
Densidade Óssea , Análise de Elementos Finitos , Fixação Interna de Fraturas , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Feminino , Humanos , Masculino , Fraturas do Rádio/fisiopatologia
6.
J Mech Behav Biomed Mater ; 32: 287-299, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508715

RESUMO

Quantitative computed tomography (QCT) based nonlinear homogenized finite element (hFE) models of the human femur do not take bone׳s microstructure into account due to the low resolution of the QCT images. Models based on high-resolution peripheral quantitative computed tomography (HR-pQCT) are able to include trabecular orientation and allow the modeling of a cortical shell. Such a model showed improvements compared to QCT-based models when studying human vertebral bodies. The goal of this study was to compare the femoral strength prediction ability of subject specific nonlinear homogenized FE (hFE) models based on HR-pQCT and QCT images. Thirty-six pairs of femurs were scanned with QCT as well as HR-pQCT, and tested in one-legged stance (STANCE) and side-ways fall (SIDE) configurations up to failure. Non-linear hFE models were generated from HR-pQCT images (smooth meshes) and compared to recently published QCT based models (voxel meshes) as well as experiments with respect to ultimate force. HR-pQCT-based hFE models improved ultimate force (R(2)=0.87 vs 0.80, p=0.02) predictions only in STANCE configuration but not in SIDE (R(2)=0.86 vs 0.84, p=0.6). Damage locations were similar for both types of models. In conclusion, it was shown for the first time on a large femur dataset that a more accurate representation of trabecular orientation and cortex only improve FE predictions in STANCE configuration, where the main trabecular orientation is aligned with the load direction. In the clinically more relevant SIDE configuration, the improvements were not significant.


Assuntos
Acidentes por Quedas , Fêmur/fisiologia , Análise de Elementos Finitos , Fenômenos Mecânicos , Postura , Tomografia Computadorizada por Raios X , Suporte de Carga , Fenômenos Biomecânicos , Fêmur/diagnóstico por imagem , Humanos , Teste de Materiais
7.
J Mech Behav Biomed Mater ; 26: 136-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23768961

RESUMO

Finite element (FE) models allow quantitative predictions of bone strength and fracture location and, thus, became increasingly popular for assessing fracture risk or effectiveness of osteoporosis therapies. However, predictions crucially depend on the used material models, which are usually complex and rely on a large number of parameters. Therefore, the goal of this study was to propose a simple crushable foam (CF) material model and to perform an extensive comparison with data from the literature. Material parameters of the CF plasticity model were identified based on previously published yield stress data. Voxel-based FE models of thirty-six femora pairs and thirty-eight vertebral bodies were generated from QCT images. The femora models were analyzed with boundary conditions simulating one-legged stance and fall on the greater trochanter. The vertebral body models were subjected to uniaxial compression. Load-displacement curves, ultimate forces and damage distributions computed with the CF material model were compared to a reference material model as well as to in vitro experiments. The result showed that the FE models with CF material provided reasonable quantitative predictions of the ultimate forces measured in the experiments (R(2)>0.80). Comparison of the FE results obtained with CF and reference material model showed very similar outcomes regarding ultimate force, load-displacement behavior and damage patterns for all investigated anatomical sites and loading conditions. In conclusion, the identified CF material model provided good strength and damage predictions, required only few material parameters and is already implemented in many commercial FE solvers. Thus, it can be easily used in other studies.


Assuntos
Materiais Biomiméticos , Fêmur/lesões , Fêmur/fisiologia , Análise de Elementos Finitos , Fenômenos Mecânicos , Traumatismos da Coluna Vertebral , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Humanos , Suporte de Carga
8.
J Biomech ; 45(8): 1478-84, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22386105

RESUMO

Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.


Assuntos
Cimentos Ósseos/química , Polimetil Metacrilato/química , Vértebras Torácicas/química , Vértebras Torácicas/fisiologia , Vertebroplastia , Adesividade , Idoso , Idoso de 80 Anos ou mais , Módulo de Elasticidade , Feminino , Dureza , Humanos , Masculino , Teste de Materiais
9.
J Biomech ; 44(15): 2732-6, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21872863

RESUMO

Vertebroplasty forms a porous PMMA/bone composite which was shown to be weaker and less stiff than pure PMMA. It is not known what determines the mechanical properties of such composites in detail. This study investigated the effects of bone volume fraction (BV/TV), cement porosity (PV/(TV-BV), PV…pore volume) and cement stiffness. Nine human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Fourteen cylindrical PMMA/bone biopsies were extracted from the augmented region, scanned with a micro-CT system and tested in compression until failure. Micro-finite element (FE) models of the complete biopsies, of the trabecular bone alone as well as of the porous cement alone were generated from CT images to gain more insight into the role of bone and pores. PV/(TV-BV) and experimental moduli of standard/low-modulus cement (R(2)=0.91/0.98) as well as PV/(TV-BV) and yield stresses (R(2)=0.92/0.83) were highly correlated. No correlation between BV/TV (ranging from 0.057 to 0.138) and elastic moduli was observed (R(2)< 0.05). Interestingly, the micro-FE models of the porous cement alone reproduced the experimental elastic moduli of the standard/low-modulus cement biopsies (R(2)=0.75/0.76) more accurately than the models with bone (R(2)=0.58/0.31). In conclusion, the mechanical properties of the biopsies were mainly determined by the cement porosity and the cement material properties. The study showed that bone tissue inside the biopsies was mechanically "switched off" such that load was carried essentially by the porous PMMA.


Assuntos
Força Compressiva , Modelos Biológicos , Polimetil Metacrilato , Coluna Vertebral , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Porosidade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...