Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 115: 103693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33540076

RESUMO

BACKGROUND: Diabetics has become a serious public health burden in China. Multiple complications appear with the progression of diabetics pose a serious threat to the quality of human life and health. We can prevent the progression of prediabetics to diabetics and delay the progression to diabetics by early identification of diabetics and prediabetics and timely intervention, which have positive significance for improving public health. OBJECTIVE: Using machine learning techniques, we establish the noninvasive diabetics risk prediction model based on tongue features fusion and predict the risk of prediabetics and diabetics. METHODS: Applying the type TFDA-1 Tongue Diagnosis Instrument, we collect tongue images, extract tongue features including color and texture features using TDAS, and extract the advanced tongue features with ResNet-50, achieve the fusion of the two features with GA_XGBT, finally establish the noninvasive diabetics risk prediction model and evaluate the performance of testing effectiveness. RESULTS: Cross-validation suggests the best performance of GA_XGBT model with fusion features, whose average CA is 0.821, the average AUROC is 0.924, the average AUPRC is 0.856, the average Precision is 0.834, the average Recall is 0.822, the average F1-score is 0.813. Test set suggests the best testing performance of GA_XGBT model, whose average CA is 0.81, the average AUROC is 0.918, the average AUPRC is 0.839, the average Precision is 0.821, the average Recall is 0.81, the average F1-score is 0.796. When we test prediabetics with GA_XGBT model, we find that the AUROC is 0.914, the Precision is 0.69, the Recall is 0.952, the F1-score is 0.8. When we test diabetics with GA_XGBT model, we find that the AUROC is 0.984, the Precision is 0.929, the Recall is 0.951, the F1-score is 0.94. CONCLUSIONS: Based on tongue features, the study uses classical machine learning algorithm and deep learning algorithm to maximum the respective advantages. We combine the prior knowledge and potential features together, establish the noninvasive diabetics risk prediction model with features fusion algorithm, and detect prediabetics and diabetics noninvasively. Our study presents a feasible method for establishing the association between diabetics and the tongue image information and prove that tongue image information is a potential marker which facilitates effective early diagnosis of prediabetics and diabetics.


Assuntos
Diabetes Mellitus , Estado Pré-Diabético , China , Diabetes Mellitus/diagnóstico , Humanos , Aprendizado de Máquina , Estado Pré-Diabético/diagnóstico , Língua
2.
Int J Comput Assist Radiol Surg ; 15(2): 203-212, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713089

RESUMO

PURPOSE: Studies have shown the association between tongue color and diseases. To help clinicians make more objective and accurate decisions quickly, we take unsupervised learning to deal with the basic clustering of tongue color in a 2D way. METHODS: A total of 595 typical tongue images were analyzed. The 3D information extracted from the image was transformed into 2D information by principal component analysis (PCA). K-Means was applied for clustering into four diagnostic groups. The results were evaluated by clustering accuracy (CA), Jaccard similarity coefficient (JSC), and adjusted rand index (ARI). RESULTS: The new 2D information totally retained 89.63% original information in the L*a*b* color space. And our methods successfully classified tongue images into four clusters and the CA, ARI, and JSC were 89.04%, 0.721, and 0.890, respectively. CONCLUSIONS: The 2D information of tongue color can be used for clustering and to improve the visualization. K-Means combined with PCA could be used for tongue color classification and diagnosis. Methods in the paper might provide reference for the other research based on image diagnosis technology.


Assuntos
Cor , Língua , Análise por Conglomerados , Humanos , Análise de Componente Principal
3.
Biomed Res Int ; 2018: 2964816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534557

RESUMO

OBJECTIVE: In this study, machine learning was utilized to classify and predict pulse wave of hypertensive group and healthy group and assess the risk of hypertension by observing the dynamic change of the pulse wave and provide an objective reference for clinical application of pulse diagnosis in traditional Chinese medicine (TCM). METHOD: The basic information from 450 hypertensive cases and 479 healthy cases was collected by self-developed H20 questionnaires and pulse wave information was acquired by self-developed pulse diagnostic instrument (PDA-1). H20 questionnaires and pulse wave information were used as input variables to obtain different machine learning classification models of hypertension. This method was aimed at analyzing the influence of pulse wave on the accuracy and stability of machine learning model, as well as the feature contribution of hypertension model after removing noise by K-means. RESULT: Compared with the classification results before removing noise, the accuracy and the area under the curve (AUC) had been improved. The accuracy rates of AdaBoost, Gradient Boosting, and Random Forest (RF) were 86.41%, 86.41%, and 85.33%, respectively. AUC were 0.86, 0.86, and 0.85, respectively. The maximum accuracy of SVM increased from 79.57% to 83.15%, and the AUC stability increased from 0.79 to 0.83. In addition, the features of importance on traditional statistics and machine learning were consistent. After removing noise, the features with large changes were h1/t1, w1/t, t, w2, h2, t1, and t5 in AdaBoost and Gradient Boosting (top10). The common variables for machine learning and traditional statistics were h1/t1, h5, t, Ad, BMI, and t2. CONCLUSION: Pulse wave-based diagnostic method of hypertension has significant value in reference. In view of the feasibility of digital-pulse-wave diagnosis and dynamically evaluating hypertension, it provides the research direction and foundation for Chinese medicine in the dynamic evaluation of modern disease diagnosis and curative effect.


Assuntos
Hipertensão/diagnóstico , Aprendizado de Máquina , Análise de Onda de Pulso , Adulto , Algoritmos , Análise por Conglomerados , Feminino , Humanos , Masculino , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...