Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 6(10): 2432-2445, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36303716

RESUMO

India experiences some of the highest levels of ambient PM2.5 aerosol pollution in the world. However, due to the historical dearth of in situ measurements, chemical transport models that are often used to estimate PM2.5 exposure over the region are rarely evaluated. Here, we conduct a novel model comparison with speciated airborne measurements of fine aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we incorporate process-level changes to the model and use satellite observations from the Cross-track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI) to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates significantly lower bias (NMBModified: 0.19; NMBBase: 0.61) when validated against the airborne aerosol measurements, particularly for the nitrate (NMBModified: 0.08; NMBBase: 1.64) and ammonium simulation (NMBModified: 0.49; NMBBase: 0.90). We use this validated simulation to estimate a population-weighted annual PM2.5 exposure of 61.4 µg m-3, with the RCO (residential, commercial, and other) and energy sectors contributing 21% and 19%, respectively, resulting in an estimated 961,000 annual PM2.5-attributable deaths. Regional exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation). Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM2.5 aerosol source attribution for health assessments and air quality management in India.

2.
Environ Sci Technol Lett ; 9(6): 501-506, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35719860

RESUMO

The World Health Organization recently updated their air quality guideline for annual fine particulate matter (PM2.5) exposure from 10 to 5 µg m-3, citing global health considerations. We explore if this guideline is attainable across different regions of the world using a series of model sensitivity simulations for 2019. Our results indicate that >90% of the global population is exposed to PM2.5 concentrations that exceed the 5 µg m-3 guideline and that only a few sparsely populated regions (largely in boreal North America and Asia) experience annual average concentrations of <5 µg m-3. We find that even under an extreme abatement scenario, with no anthropogenic emissions, more than half of the world's population would still experience annual PM2.5 exposures above the 5 µg m-3 guideline (including >70% and >60% of the African and Asian populations, respectively), largely due to fires and natural dust. Our simulations demonstrate the large heterogeneity in PM2.5 composition across different regions and highlight how PM2.5 composition is sensitive to reductions in anthropogenic emissions. We thus suggest the use of speciated aerosol exposure guidelines to help facilitate region-specific air quality management decisions and improve health-burden estimates of fine aerosol exposure.

3.
Environ Sci Technol ; 49(7): 4129-37, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25734883

RESUMO

The high atmospheric concentrations of toxic gases, particulate matter, and acids in the areas immediately surrounding volcanoes can have negative impacts on human and ecological health. To better understand the atmospheric fate of volcanogenic emissions in the near field (in the first few hours after emission), we have carried out real-time measurements of key chemical components of the volcanic plume from Ki̅lauea on the Island of Hawai'i. Measurements were made at two locations, one ∼ 3 km north-northeast of the vent and the other 31 km to the southwest, with sampling at each site spanning a range of meteorological conditions and volcanic influence. Instrumentation included a sulfur dioxide monitor and an Aerosol Chemical Speciation Monitor, allowing for a measurement of the partitioning between the two major sulfur species (gas-phase SO2 and particulate sulfate) every 5 min. During trade wind conditions, which sent the plume toward the southwest site, sulfur partitioning exhibited a clear diurnal pattern, indicating photochemical oxidation of SO2 to sulfate; this enabled the quantitative determination of plume age (5 h) and instantaneous SO2 oxidation rate (2.4 × 10(-6) s(-1) at solar noon). Under stagnant conditions near the crater, the extent of SO2 oxidation was substantially higher, suggesting faster oxidation. The particles within the plume were extremely acidic, with pH values (controlled largely by ambient relative humidity) as low as -0.8 and strong acidity (controlled largely by absolute sulfate levels) up to 2200 nmol/m(3). The high variability of sulfur partitioning and particle composition underscores the chemically dynamic nature of volcanic plumes, which may have important implications for human and ecological health.


Assuntos
Dióxido de Enxofre/análise , Enxofre/análise , Erupções Vulcânicas/análise , Aerossóis/análise , Gases , Havaí , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Oxirredução , Material Particulado/análise , Sulfatos/análise , Enxofre/química , Dióxido de Enxofre/química , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...