Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Circ Cogn Behav ; 5: 100183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745894

RESUMO

During exercise, cerebral blood flow (CBF) is expected to only increase to a maximal volume up to a moderate intensity aerobic effort, suggesting that CBF is expected to decline past 70 % of a maximal aerobic effort. Increasing CBF during exercise permits an increased cerebral metabolic activity that stimulates neuroplasticity and other key processes of cerebral adaptations that ultimately improve cognitive health. Recent work has focused on utilizing gas-induced exposure to intermittent hypoxia during aerobic exercise to maximize the improvements in cognitive function compared to those seen under normoxic conditions. However, it is postulated that exercising by isolating breathing only to the nasal route may provide a similar effect by stimulating a transient hypercapnic condition that is non-gas dependent. Because nasal breathing prevents hyperventilation during exercise, it promotes an increase in the partial arterial pressure of CO2. The rise in systemic CO2 stimulates hypercapnia and permits the upregulation of hypoxia-related genes. In addition, the rise in systemic CO2 stimulates cerebral vasodilation, promoting a greater increase in CBF than seen during normoxic conditions. While more research is warranted, nasal breathing might also promote benefits related to improved sleep, greater immunity, and body fat loss. Altogether, this narrative review presents a theoretical framework by which exercise-induced hypercapnia by utilizing nasal breathing during moderate-intensity aerobic exercise may promote greater health adaptations and cognitive improvements than utilizing oronasal breathing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...