Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15513, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969691

RESUMO

Spontaneous polarization and crystallographic orientations within ferroelectric domains are investigated using an epitaxially grown BiFeO3 thin film under bi-axial tensile strain. Four dimensional-scanning transmission electron microscopy (4D-STEM) and atomic resolution STEM techniques revealed that the tensile strain applied is not enough to cause breakdown of equilibrium BiFeO3 symmetry (rhombohedral with space group: R3c). 4D-STEM data exhibit two types of BiFeO3 ferroelectric domains: one with projected polarization vector possessing out-of-plane component only, and the other with that consisting of both in-plane and out-of-plane components. For domains with only out-of-plane polarization, convergent beam electron diffraction (CBED) patterns exhibit "extra" Bragg's reflections (compared to CBED of cubic-perovskite) that indicate rhombohedral symmetry. In addition, beam damage effects on ferroelectric property measurements were investigated by systematically changing electron energy from 60 to 300 keV.

3.
Adv Mater ; 36(24): e2312673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441355

RESUMO

The drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO2 thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO2 substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO2 film channel device on TiO2 substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase-field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical-triggering of the IMT via ionizing defects and an active "IMT-like" substrate layer are critical aspects to consider in device applications.

4.
Sci Rep ; 13(1): 19018, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923812

RESUMO

A BiFeO3 film is grown epitaxially on a PrScO3 single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3 resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3 is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3 is the same as that of PrScO3 with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3 and PrScO3 are stored as elastic energy within BiFeO3 film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3 maintains rhombohedral symmetry, i.e., space group of R3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.

5.
Microsc Microanal ; 29(Supplement_1): 1684-1685, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613795
6.
Nat Commun ; 14(1): 1468, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928184

RESUMO

The layered square-planar nickelates, Ndn+1NinO2n+2, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd6Ni5O12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, Nd4Ni3O10, and subsequent reduction to the square-planar phase, Nd4Ni3O8. We synthesize our highest quality Nd4Ni3O10 films under compressive strain on LaAlO3 (001), while Nd4Ni3O10 on NdGaO3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd4Ni3O10 on SrTiO3 (001). Films reduced on LaAlO3 become insulating and form compressive strain-induced c-axis canting defects, while Nd4Ni3O8 films on NdGaO3 are metallic. This work provides a pathway to the synthesis of Ndn+1NinO2n+2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy.

7.
ACS Appl Mater Interfaces ; 14(39): 45025-45031, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149756

RESUMO

Oxide two-dimensional electron gases (2DEGs) promise high charge carrier concentrations and low-loss electronic transport in semiconductors such as BaSnO3 (BSO). ACBN0 computations for BSO/SrNbO3 (SNO) interfaces show Nb-4d electron injection into extended Sn-5s electronic states. The conduction band minimum consists of Sn-5s states ∼1.2 eV below the Fermi level for intermediate thickness 6-unit cell BSO/6-unit cell SNO superlattices, corresponding to an electron density in BSO of ∼1021 cm-3. Experimental studies of analogous BSO/SNO interfaces grown by molecular beam epitaxy confirm significant charge transfer from SNO to BSO. In situ angle-resolved X-ray photoelectron spectroscopy studies show an electron density of ∼4 × 1021 cm-3. The consistency of theory and experiments show that BSO/SNO interfaces provide a novel materials platform for low loss electron transport in 2DEGs.

8.
Nano Lett ; 22(10): 4276-4284, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35500055

RESUMO

Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT+U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors.

9.
Adv Sci (Weinh) ; 9(12): e2105652, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187807

RESUMO

The prospect of 2-dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide-bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high-electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO3 -based heterostructures. Here, 2DEG formation at the LaScO3 /BaSnO3 (LSO/BSO) interface with a room-temperature mobility of 60 cm2  V-1  s-1 at a carrier concentration of 1.7 × 1013  cm-2 is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO3 -based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high-temperature treatment, which not only reduces the dislocation density but also produces a SnO2 -terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark-field transmission electron microscopy imaging and in-line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate-based 2DEGs at application-relevant temperatures for oxide nanoelectronics.

10.
Nat Mater ; 21(2): 160-164, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811494

RESUMO

Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.


Assuntos
Elétrons , Supercondutividade , Temperatura Alta
12.
ACS Nano ; 15(6): 10587-10596, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081854

RESUMO

Remote epitaxy has drawn attention as it offers epitaxy of functional materials that can be released from the substrates with atomic precision, thus enabling production and heterointegration of flexible, transferrable, and stackable freestanding single-crystalline membranes. In addition, the remote interaction of atoms and adatoms through two-dimensional (2D) materials in remote epitaxy allows investigation and utilization of electrical/chemical/physical coupling of bulk (3D) materials via 2D materials (3D-2D-3D coupling). Here, we unveil the respective roles and impacts of the substrate material, graphene, substrate-graphene interface, and epitaxial material for electrostatic coupling of these materials, which governs cohesive ordering and can lead to single-crystal epitaxy in the overlying film. We show that simply coating a graphene layer on wafers does not guarantee successful implementation of remote epitaxy, since atomically precise control of the graphene-coated interface is required, and provides key considerations for maximizing the remote electrostatic interaction between the substrate and adatoms. This was enabled by exploring various material systems and processing conditions, and we demonstrate that the rules of remote epitaxy vary significantly depending on the ionicity of material systems as well as the graphene-substrate interface and the epitaxy environment. The general rule of thumb discovered here enables expanding 3D material libraries that can be stacked in freestanding form.

13.
Adv Mater ; 33(10): e2006089, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533113

RESUMO

The synthesis of fully epitaxial ferroelectric Hf0.5 Zr0.5 O2 (HZO) thin films through the use of a conducting pyrochlore oxide electrode that acts as a structural and chemical template is reported. Such pyrochlores, exemplified by Pb2 Ir2 O7 (PIO) and Bi2 Ru2 O7 (BRO), exhibit metallic conductivity with room-temperature resistivity of <1 mΩ cm and are closely lattice matched to yttria-stabilized zirconia substrates as well as the HZO layers grown on top of them. Evidence for epitaxy and domain formation is established with X-ray diffraction and scanning transmission electron microscopy, which show that the c-axis of the HZO film is normal to the substrate surface. The emergence of the non-polar-monoclinic phase from the polar-orthorhombic phase is observed when the HZO film thickness is ≥≈30 nm. Thermodynamic analyses reveal the role of epitaxial strain and surface energy in stabilizing the polar phase as well as its coexistence with the non-polar-monoclinic phase as a function of film thickness.

14.
Adv Mater ; 32(49): e2004490, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084168

RESUMO

The small-polaron hopping model has been used for six decades to rationalize electronic charge transport in oxides. The model was developed for binary oxides, and, despite its significance, its accuracy has not been rigorously tested for higher-order oxides. Here, the small-polaron transport model is tested by using a spinel system with mixed cation oxidation states (Mnx Fe3- x O4 ). Using molecular-beam epitaxy (MBE), a series of single crystal Mnx Fe3- x O4 thin films with controlled stoichiometry, 0 ≤ x ≤ 2.3, and lattice strain are grown, and the cation site-occupation is determined through X-ray emission spectroscopy (XES). Density functional theory + U analysis shows that charge transport occurs only between like-cations (Fe/Fe or Mn/Mn). The site-occupation data and percolation models show that there are limited stoichiometric ranges for transport along Fe and Mn pathways. Furthermore, due to asymmetric hopping barriers and formation energies, the Mn O h 2 + polaron is energetically preferred to the Fe O h 2 + polaron, resulting in an asymmetric contribution of Mn/Mn pathways. All of these findings are not contained in the conventional small-polaron hopping model, highlighting its inadequacy. To correct the model, new parameters in the nearest-neighbor hopping equation are introduced to account for percolation, cross-hopping, and polaron-distribution, and it is found that a near-perfect correlation can be made between experiment and theory for the electronic conductivity.

15.
Nanoscale ; 12(36): 18857-18863, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32896856

RESUMO

Epitaxial films of vanadium dioxide (VO2) on rutile TiO2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile (metal) R end phases. In this work, we investigate structural behavior of epitaxial VO2 thin films deposited on isostructural MgF2 (001) and (110) substrates via temperature-dependent Raman microscopy analysis. The choice of MgF2 substrate clearly reveals how elongation of V-V dimers accompanied by the shortening of V-O bonds triggers the intermediate M2 phase in the temperature range between 70-80 °C upon the heating-cooling cycles. Consistent with earlier claims of strain-induced electron correlation enhancement destabilizing the M2 phase our temperature-dependent Raman study supports a small temperature window for this phase. The similarity of the hysteretic behavior of structural and electronic transitions suggests that the structural transitions play key roles in the switching properties of epitaxial VO2 thin films.

16.
Adv Mater ; 32(34): e2000809, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666563

RESUMO

Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr3 SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations, a deposition approach is designed and implemented to achieve the adsorption-controlled growth of epitaxial Sr3 SnO single-crystal films by molecular-beam epitaxy (MBE). In situ transport and angle-resolved photoemission spectroscopy measurements reveal the metallic and electronic structure of the as-grown samples. Compared with conventional MBE, the used synthesis route results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of Sr3 SnO opens opportunities to manipulate topological states by tuning symmetries via strain engineering and heterostructuring.

17.
Phys Rev Lett ; 124(19): 196402, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469580

RESUMO

Recent reports have identified new metaphases of VO_{2} with strain and/or doping, suggesting the structural phase transition and the metal-to-insulator transition might be decoupled. Using epitaxially strained VO_{2}/TiO_{2} (001) thin films, which display a bulklike abrupt metal-to-insulator transition and rutile to monoclinic transition structural phase transition, we employ x-ray standing waves combined with hard x-ray photoelectron spectroscopy to simultaneously measure the structural and electronic transitions. This x-ray standing waves study elegantly demonstrates the structural and electronic transitions occur concurrently within experimental limits (±1 K).

18.
ACS Appl Mater Interfaces ; 12(18): 20691-20703, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32292024

RESUMO

We study the interplay between epitaxial strain, film thickness, and electric field in the creation, modification, and design of distinct ferroelastic structures in PbTiO3 thin films. Strain and thickness greatly affect the structures formed, providing a two-variable parameterization of the resulting self-assembly. Under applied electric fields, these strain-engineered ferroelastic structures are highly malleable, especially when a/c and a1/a2 superdomains coexist. To reconfigure the ferroelastic structures and achieve self-assembled nanoscale-ordered morphologies, pure ferroelectric switching of individual c-domains within the a/c superdomains is essential. The stability, however, of the electrically written ferroelastic structures is in most cases ephemeral; the speed of the relaxation process depends sensitively on strain and thickness. Only under low tensile strain-as is the case for PbTiO3 on GdScO3-and below a critical thickness do the electrically created a/c superdomain structures become stable for days or longer, making them relevant for reconfigurable nanoscale electronics or nonvolatile electromechanical applications.

19.
J Chem Phys ; 152(9): 094704, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480745

RESUMO

We report the temperature influence of the OHad and Oad electroadsorption on RuO2(110) films grown on TiO2(110) crystals in alkaline media. From the temperature effect, we evaluate the enthalpy and entropy of the OHad and Oad electroadsorption, including the adsorbate-adsorbate interactions that we analyze using the interaction parameters of the Frumkin-isotherm model. We found that the adsorbates repel each other enthalpically but attract each other entropically. Our result suggests that an entropy analysis is necessary to capture the electroadsorption behavior on RuO2 since the enthalpy-entropy competition strongly influences the electroadsorption behavior. Our observation of an entropic force is consistent with the view that water may be a mediator for adsorbate-adsorbate interactions.

20.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596599

RESUMO

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...