Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 8(3)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35038694

RESUMO

Quantification of physiological parameters in preclinical pharmacokinetic studies based on nuclear imaging requires the monitoring of arterial radioactivity over time, known as the arterial input function (AIF). Continuous derivation of the AIF in rodent models is very challenging because of the limited blood volume available for sampling. To address this challenge, an Ultra High Sensitivity Blood Counter (UHS-BC) was developed. The device detects beta particles in real-time using silicon photodiodes, custom low-noise electronics, and 3D-printed plastic cartridges to hold standard catheters. Two prototypes were built and characterized in two facilities. Sensitivities up to 39% for18F and 58% for11C-based positron emission tomography (PET) tracers were demonstrated.99mTc and125I based Single Photon Emission Computed Tomography (SPECT) tracers were detected with greater than 3% and 10% sensitivity, respectively, opening new applications in nuclear imaging and fundamental biology research. Measured energy spectra show all relevant peaks down to a minimum detectable energy of 20 keV. The UHS-BC was shown to be highly reliable, robust towards parasitic background radiation and electromagnetic interference in the PET or MRI environment. The UHS-BC provides reproducible results under various experimental conditions and was demonstrated to be stable over days of continuous operation. Animal experiments showed that the UHS-BC performs accurate AIF measurements using low detection volumes suitable for small animal models in PET, SPECT and PET/MRI investigations. This tool will help to reduce the time and number of animals required for pharmacokinetic studies, thus increasing the throughput of new drug development.


Assuntos
Radioatividade , Algoritmos , Animais , Partículas beta , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
2.
Phys Med Biol ; 66(6): 065019, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33412542

RESUMO

The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications. A reconstructed spatial resolution of 0.78 mm (0.5 µ l) is measured close to the center of the radial field of view. With an energy window of 350 650 keV, the system absolute sensitivity is 1.2% and its maximum noise equivalent count rate reaches 61.1 kcps at 117 MBq. Submillimetric spatial resolution is achieved in a hot spot phantom and tiny bone structures were resolved with unprecedented contrast in the mouse. These results provide convincing evidence of the capabilities of the LabPET II technology for biomolecular imaging in preclinical research.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo , Calibragem , Eletrônica , Desenho de Equipamento , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/métodos
3.
IEEE Trans Radiat Plasma Med Sci ; 3(3): 334-342, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31453423

RESUMO

The concept of a new ultra-high resolution positron emission tomography (PET) brain scanner featuring truly pixelated detectors based on the LabPET II technology is presented. The aim of this study is to predict the performance of the scanner using GATE simulations. The NEMA procedures for human and small animal PET scanners were used, whenever appropriate, to simulate spatial resolution, scatter fraction, count rate performance and the sensitivity of the proposed system compared to state-of-the-art PET scanners that would currently be the preferred choices for brain imaging, namely the HRRT dedicated brain PET scanner and the Biograph Vision wholebody clinical PET scanner. The imaging performance was also assessed using the NEMA-NU4 image quality phantom, a mini hot spot phantom and a 3-D voxelized brain phantom. A reconstructed nearly isotropic spatial resolution of 1.3 mm FWHM is obtained at 10 mm from the center of the field of view. With an energy window of 250-650 keV, the system absolute sensitivity is estimated at 3.4% and its maximum NECR reaches 16.4 kcps at 12 kBq/cc. The simulation results provide evidence of the promising capabilities of the proposed scanner for ultra-high resolution brain imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...