Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438950

RESUMO

Introduction: Urinary tract infections (UTIs) affect more than 150 million individuals annually. A strong correlation exists between bladder epithelia invasion by uropathogenic bacteria and patients with recurrent UTIs. Intracellular bacteria often recolonise epithelial cells post-antibiotic treatment. We investigated whether N-acetylcysteine (NAC) could prevent uropathogenic E. coli and E. faecalis bladder cell invasion, in addition to its effect on uropathogens when used alone or in combination with ciprofloxacin. Methods: An invasion assay was performed in which bacteria were added to bladder epithelial cells (BECs) in presence of NAC and invasion was allowed to occur. Cells were washed with gentamicin, lysed, and plated for enumeration of the intracellular bacterial load. Cytotoxicity was evaluated by exposing BECs to various concentrations of NAC and quantifying the metabolic activity using resazurin at different exposure times. The effect of NAC on the preformed biofilms was also investigated by treating 48 h biofilms for 24 h and enumerating colony counts. Bacteria were stained with propidium iodide (PI) to measure membrane damage. Results: NAC completely inhibited BEC invasion by multiple E. coli and E. faecalis clinical strains in a dose-dependent manner (p < 0.01). This was also evident when bacterial invasion was visualised using GFP-tagged E. coli. NAC displayed no cytotoxicity against BECs despite its intrinsic acidity (pH ~2.6), with >90% cellular viability 48 h post-exposure. NAC also prevented biofilm formation by E. coli and E. faecalis and significantly reduced bacterial loads in 48 h biofilms when combined with ciprofloxacin. NAC visibly damaged E. coli and E. faecalis bacterial membranes, with a threefold increase in propidium iodide-stained cells following treatment (p < 0.05). Conclusions: NAC is a non-toxic, antibiofilm agent in vitro and can prevent cell invasion and IBC formation by uropathogens, thus providing a potentially novel and efficacious treatment for UTIs. When combined with an antibiotic, it may disrupt bacterial biofilms and eliminate residual bacteria.

2.
Int J Antimicrob Agents ; 58(2): 106372, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116184

RESUMO

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The resulting chloride and bicarbonate imbalance produces a thick, static lung mucus. This mucus is not easily expelled from the lung and can be colonised by bacteria, leading to biofilm formation. CF lung infection with Burkholderia cepacia complex (BCC), particularly the subspecies B. cenocepacia, results in higher morbidity and mortality. Patients infected with BCC can rapidly progress to "cepacia syndrome", a fatal necrotising pneumonia. The aim of this study was to identify whether a combination therapy (CT) of selected antioxidants and antibiotics significantly disrupts B. cenocepacia biofilms and to determine the optimum CT level for treatment. Using controlled in vitro spectrophotometry, colony-forming unit and microscopy assays, three antioxidants (N-acetylcysteine [NAC], glutathione and vitamin C) and three antibiotics (ciprofloxacin, ceftazidime and tobramycin) were screened and assessed for their ability to disrupt the early and mature biofilms of six B. cenocepacia CF isolates. A combination of NAC and ciprofloxacin produced a statistically significant biofilm disruption in all strains tested, with growth inhibition (>5-8 log10) observed when exposed to 4890 or 8150 µg/mL NAC in combination with 32 or 64 µg/mL ciprofloxacin. NAC-mediated biofilm disruption may be aided by the acidic pH of NAC at higher concentrations. This study showed that NAC is an effective disruptor that reduces the necessity for high concentrations of antibiotic. Further research will focus on the host toxicity and efficacy in ex vivo CF models.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/microbiologia , Pulmão/microbiologia , Humanos
3.
Front Microbiol ; 10: 2000, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543871

RESUMO

Bacterial antibiotic resistance has increased in recent decades, raising concerns in hospital and community settings. Novel, innovative strategies are needed to eradicate bacteria, particularly within biofilms, and diminish the likelihood of recurrence. In this study, we investigated whether glutathione (GSH) can act as a biofilm disruptor, and enhance antibiotic effectiveness against various bacterial pathogens. Biological levels (10 mM) of GSH did not have a significant effect in inhibiting growth or disrupting the biofilm in four out of six species tested. However, exposure to 30 mM GSH showed >50% decrease in growth for all bacterial species, with almost 100% inhibition of Streptococcus pyogenes and an average of 94-52% inhibition for Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive S. aureus (MSSA) and multi-drug resistant Acinetobacter baumannii (MRAB) isolates, respectively. Klebsiella pneumoniae and Enterobacter sp. isolates were however, highly resistant to 30 mM GSH. With respect to biofilm viability, all species exhibited a >50% decrease in viability with 30 mM GSH, with confocal imaging showing considerable change in the biofilm architecture of MRAB isolates. The mechanism of GSH-mediated biofilm disruption is possibly due to a concentration-dependent increase in GSH acidity that triggers cleaving of the matrix components. Enzymatic treatment of MRAB revealed that eDNA and polysaccharides are essential for biofilm stability and eDNA removal enhanced amikacin efficiency. Combination of GSH, amikacin and DNase-I showed the greatest reduction in MRAB biofilm viability. Additionally, GSH alone and in combination with amikacin fostered human fibroblast cell (HFF-1) growth and confluence while inhibiting MRAB adhesion and colonization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...