Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5539, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218466

RESUMO

Bioelectronics stickers that interface the human epidermis and collect electrophysiological data will constitute important tools in the future of healthcare. Rapid progress is enabled by novel fabrication methods for adhesive electronics patches that are soft, stretchable and conform to the human skin. Yet, the ultimate functionality of such systems still depends on rigid components such as silicon chips and the largest rigid component on these systems is usually the battery. In this work, we demonstrate a quickly deployable, untethered, battery-free, ultrathin (~5 µm) passive "electronic tattoo" that interfaces with the human skin for acquisition and transmission of physiological data. We show that the ultrathin film adapts well with the human skin, and allows an excellent signal to noise ratio, better than the gold-standard Ag/AgCl electrodes. To supply the required energy, we rely on a wireless power transfer (WPT) system, using a printed stretchable Ag-In-Ga coil, as well as printed biopotential acquisition electrodes. The tag is interfaced with data acquisition and communication electronics. This constitutes a "data-by-request" system. By approaching the scanning device to the applied tattoo, the patient's electrophysiological data is read and stored to the caregiver device. The WPT device can provide more than 300 mW of measured power if it is transferred over the skin or 100 mW if it is implanted under the skin. As a case study, we transferred this temporary tattoo to the human skin and interfaced it with an electrocardiogram (ECG) device, which could send the volunteer's heartbeat rate in real-time via Bluetooth.

2.
ACS Appl Mater Interfaces ; 10(45): 38760-38768, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30338978

RESUMO

We introduce a soft ultrathin and stretchable electronic skin with surface-mounted components that can be transferred and wrapped around any three-dimensional (3D) surface or self-adhere to the human skin. The ∼5 µm thick circuit is fabricated by printing the pattern over a temporary tattoo paper using a desktop laser printer, which is then coated with a silver ink and eutectic gallium-indium (EGaIn) liquid metal alloy. The resulting "Ag-In-Ga" traces are highly conductive and maintain low electrical resistivity as the circuit is stretched to conform to nondevelopable 3D surfaces. We also address integration of surface-mounted microelectronic chips by introducing a novel z-axis conductive interface composed of magnetically aligned EGaIn-coated Ag-Ni microparticles embedded in polyvinyl alcohol (PVA). This " zPVA conductive glue" allows for robust electrical contacts with microchips that have pins with dimensions as small as 300 µm. If printed on the temporary tattoo transfer paper, the populated circuit can be attached to a 3D surface using hydrographic transfer. Both printing and interfacing processes can be performed at the room temperature. We demonstrate examples of applications, including an electronic tattoo over the human epidermis for electromyography signal acquisition, an interactive circuit with touch buttons, and light-emitting diodes transferred over the 3D printed shell of a robotic prosthetic hand, and a proximity measurement skin transferred over a 3D surface.


Assuntos
Eletrônica/instrumentação , Gálio/química , Índio/química , Prata/química , Dispositivos Eletrônicos Vestíveis , Ligas/química , Condutividade Elétrica , Humanos , Microeletrodos , Maleabilidade , Fenômenos Fisiológicos da Pele
3.
Adv Mater ; : e1801852, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29845674

RESUMO

Coating inkjet-printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six-orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room-temperature "sintering" process in which the liquid-phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP-Ga-In on a 5 µm-thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin-film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo-like electronics, the low-cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like "electronic tattoos" and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn-based biphasic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...