Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790698

RESUMO

In this work, we aim to find physical evidence demonstrating the crucial role that the effective concentration of antioxidants (AOs) present at the interfacial region of emulsions has in controlling the inhibition of the lipid oxidation reaction. We prepared a series of antioxidants of different hydrophobicities derived from chlorogenic and protocatechuic acids. We first monitored, in intact emulsions, the (sigmoidal) production of conjugated dienes and determined the corresponding induction times, tind. Independently, we determined the effective concentrations of the antioxidants in the same intact emulsions. Results show that both the length of the induction periods and the antioxidant interfacial concentrations parallel each other, with a maximum at the octyl-dodecyl derivatives. The ratio between the interfacial antioxidant concentrations and the induction periods remains constant for all AOs in the same series, so that the rates of initiation of lipid oxidation are the same regardless of the hydrophobicity of the antioxidant employed. The constancy in the rate of initiation provides strong experimental evidence for a direct relationship between interfacial concentrations and antioxidant efficiencies. Results suggest new possibilities to investigate lipid peroxidation under non-forced conditions and are of interest to formulators interested in preparing emulsions with antimicrobial properties.

2.
Bioorg Chem ; 138: 106614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216893

RESUMO

The inflammatory response is a vital mechanism for repairing damage induced by aberrant health states or external insults; however, persistent activation can be linked to numerous chronic diseases. The nuclear factor kappa ß (NF-κB) inflammatory pathway and its associated mediators have emerged as critical targets for therapeutic interventions aimed at modulating inflammation, necessitating ongoing drug development. Previous studies have reported the inhibitory effect of a hydroethanol extract derived from Parinari excelsa Sabine (Chrysobalanaceae) on tumour necrosis factor-alpha (TNF-α), but the phytoconstituents and mechanisms of action remained elusive. The primary objective of this study was to elucidate the phytochemical composition of P. excelsa stem bark and its role in the mechanisms underpinning its biological activity. Two compounds were detected via HPLC-DAD-ESI(Ion Trap)-MS2 analysis. The predominant compound was isolated and identified as naringenin-8-sulphonate (1), while the identity of the second compound (compound 2) could not be determined. Both compound 1 and the extract were assessed for anti-inflammatory properties using a cell-based inflammation model, in which THP-1-derived macrophages were stimulated with LPS to examine the treatments' effects on various stages of the NF-κB pathway. Compound 1, whose biological activity is reported here for the first time, demonstrated inhibition of NF-κB activity, reduction in interleukin 6 (IL-6), TNF-α, and interleukin 1 beta (IL-1ß) production, as well as a decrease in p65 nuclear translocation in THP-1 cells, thus highlighting the potential role of sulphur substituents in the activity of naringenin (3). To explore the influence of sulphation on the anti-inflammatory properties of naringenin derivatives, we synthesized naringenin-4'-O-sulphate (4) and naringenin-7-O-sulphate (5) and evaluated their anti-inflammatory effects. Naringenin derivatives 4 and 5 did not display potent anti-inflammatory activities; however, compound 4 reduced IL-1ß production, and compound 5 diminished p65 translocation, with both exhibiting the capacity to inhibit TNF-α and IL-6 production. Collectively, the findings demonstrated that the P. excelsa extract was more efficacious than all tested compounds, while providing insights into the role of sulphation in the anti-inflammatory activity of naringenin derivatives.


Assuntos
Chrysobalanaceae , NF-kappa B , Humanos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chrysobalanaceae/metabolismo , Casca de Planta/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lipopolissacarídeos/farmacologia
3.
Antioxidants (Basel) ; 12(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107202

RESUMO

In recent years, partitioning of antioxidants in oil-water two-phase systems has received great interest because of their potential in the downstream processing of biomolecules, their benefits in health, and because partition constant values between water and model organic solvents are closely related to important biological and pharmaceutical properties such as bioavailability, passive transport, membrane permeability, and metabolism. Partitioning is also of general interest in the oil industry. Edible oils such as olive oil contain a variety of bioactive components that, depending on their partition constants, end up in an aqueous phase when extracted from olive fruits. Frequently, waste waters are subsequently discarded, but their recovery would allow for obtaining extracts with antioxidant and/or biological activities, adding commercial value to the wastes and, at the same time, would allow for minimizing environmental risks. Thus, given the importance of partitioning antioxidants, in this manuscript, we review the background theory necessary to derive the relevant equations necessary to describe, quantitatively, the partitioning of antioxidants (and, in general, other drugs) and the common methods for determining their partition constants in both binary (PWOIL) and multiphasic systems composed with edible oils. We also include some discussion on the usefulness (or not) of extrapolating the widely employed octanol-water partition constant (PWOCT) values to predict PWOIL values as well as on the effects of acidity and temperature on their distributions. Finally, there is a brief section discussing the importance of partitioning in lipidic oil-in-water emulsions, where two partition constants, that between the oil-interfacial, POI, and that between aqueous-interfacial, PwI, regions, which are needed to describe the partitioning of antioxidants, and whose values cannot be predicted from the PWOIL or the PWOCT ones.

4.
Biomedicines ; 10(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36551806

RESUMO

Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.

5.
Antioxidants (Basel) ; 11(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552687

RESUMO

During the last years, the formalism of the pseudophase kinetic model (PKM) has been successfully applied to determine the distributions of antioxidants and their effective interfacial concentrations, and to assess the relative importance of emulsion and antioxidant properties (oil and surfactant nature, temperature, acidity, chemical structure, hydrophilic-liphophilic balance (HLB), etc.) on their efficiency in intact lipid-based emulsions. The PKM permits separating the contributions of the medium and of the concentration to the overall rate of the reaction. In this paper, we report the results of a specifically designed experiment to further test the suitability of the PKM to evaluate the distributions of antioxidants among the various regions of intact lipid-based emulsions and provide insights into their chemical reactivity in multiphasic systems. For this purpose, we employed the antioxidants α- and δ-TOCopherol (α- and δ-TOC, respectively) and determined, at different acidities well below their pKa, the interfacial rate constants kI for the reaction between 16-ArN2+ and α- and δ-TOC, and the antioxidant distributions in intact emulsions prepared with olive and soybean oils. Results show that the effective interfacial concentration of δ-TOC is higher than that of α-TOC in 1:9 (v/v) soybean and 1:9 olive oil emulsions. The effective interfacial concentrations of tocopherols are much higher (15-96-fold) than the stoichiometric concentrations, as the effective interfacial concentrations of both δ-TOC and α-TOC in soybean oil emulsions are higher (2-fold) than those in olive oil emulsions. Overall, the results demonstrate that the PKM grants an effective separation of the medium and concentration effects, demonstrating that the PKM constitutes a powerful non-destructive tool to determine antioxidant concentrations in intact emulsions and to assess the effects of various factors affecting them.

6.
Biomedicines ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428559

RESUMO

The anti-inflammatory potential of oleacein, the main polyphenolic compound found in olive oil, and its main metabolites were characterized by their effects on RAW 264.7 macrophages challenged with lipopolysaccharide (LPS), and by their ability to inhibit enzymes of the arachidonic acid metabolism with a key role in the synthesis of pro-inflammatory lipid mediators. Oleacein at 12.5 µM significantly decreased the amount of L-citrulline and ●NO generated by LPS-stimulated macrophages. Hydroxytyrosol, hydroxytyrosol acetate and hydroxytyrosol acetate sulfate were also able to reduce the cellular amount of ●NO, although to a lesser extent. In contrast, hydroxytyrosol glucuronide and sulfate did not show detectable effects. Oleacein was also able to inhibit the coupled PLA2 + 5-LOX enzyme system (IC50 = 16.11 µM), as well as the 5-LOX enzyme (IC50 = 45.02 µM). Although with lower activity, both hydroxytyrosol and hydroxytyrosol acetate were also capable of inhibiting these enzymes at a concentration of 100 µM. None of the other tested metabolites showed a capacity to inhibit these enzymes. In contrast, all compounds, including glucuronides and sulfate metabolites, showed a remarkable capacity to inhibit both cyclooxygenase isoforms, COX-1 and COX-2, with IC50 values lower than 3 µM. Therefore, oleacein and its metabolites have the ability to modulate ●NO- and arachidonic acid-dependent inflammatory cascades, contributing to the anti-inflammatory activity associated with olive oil polyphenols.

7.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094444

RESUMO

The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.

8.
Food Chem ; 397: 133724, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908461

RESUMO

The effect of bovine back fat replacement by oleogels containing pork skin and olive oil on the oxidative stability, physicochemical, technological, nutritional, and sensory parameters of burgers was evaluated. Four different hamburger (H) were manufactured: with 90 % of lean beef and 10 % of bovine back fat (control, HC), or with 10 % of pork skin/water/virgin olive oil (HVOO), stripped olive oil added of an olive leaf extract (HESOO) or stripped olive oil (HSOO) oleogels, at 20:60:20 ratio. Physical-chemical stability was assessed after storage for 7 days at 4 °C and for 90 days at -20 °C, under non-vacuum and vacuum packaging. A reduction in the fat content by 80 % and in the energy content by 35 %, an increase in the protein content by 15 % and a better fatty acid profile were achieved in the oleogel containing burgers. After processing at 180 °C (grill), hardness, chewiness, sensory parameters and overall acceptability were high and comparable to control. All burgers were oxidative stable during 7 days at 4 °C. After storage for 90 days at -20 °C, only HSOO samples stored under non-vacuum packaging were oxidized. The antioxidant content in samples HVOO and HESOO efficiently prevented the oxidation of these samples.


Assuntos
Produtos da Carne , Olea , Animais , Bovinos , Produtos da Carne/análise , Azeite de Oliva , Compostos Orgânicos , Extratos Vegetais
9.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164119

RESUMO

Selecting effective antioxidants is challenging since their efficiency in inhibiting lipid oxidation depends on the rate constants of the chemical reactions involved and their concentration at the reaction site, i.e., at the interfacial region. Accumulation of antioxidants at the interface of emulsions is key to modulate their efficiency in inhibiting lipid oxidation but its control was not well understood, especially in emulsions. It can be optimized by modifying the physicochemical properties of antioxidants or the environmental conditions. In this work, we analyze the effects of surfactant concentration, droplet size, and oil to water ratio on the effective interfacial concentration of a set of chlorogenic acid (CGA) esters in fish oil-in-water (O/W) emulsions and nanoemulsions and on their antioxidant efficiency. A well-established pseudophase kinetic model is used to determine in the intact emulsified systems the effective concentrations of the antioxidants (AOs). The relative oxidative stability of the emulsions is assessed by monitoring the formation of primary oxidation products with time. Results show that the concentration of all AOs at the interfacial region is much higher (20-90 fold) than the stoichiometric one but is much lower than those of other phenolipid series such as caffeic or hydroxytyrosol derivatives. The main parameter controlling the interfacial concentration of antioxidants is the surfactant volume fraction, ΦI, followed by the O/W ratio. Changes in the droplet sizes (emulsions and nanoemulsions) have no influence on the interfacial concentrations. Despite the high radical scavenging capacity of CGA derivatives and their being concentrated at the interfacial region, the investigated AOs do not show a significant effect in inhibiting lipid oxidation in contrast with what is observed using other series of homologous antioxidants with similar reactivity. Results are tentatively interpreted in terms of the relatively low interfacial concentrations of the antioxidants, which may not be high enough to make the rate of the inhibition reaction faster than the rate of radical propagation.


Assuntos
Antioxidantes/química , Ácido Clorogênico/química , Óleos de Peixe/química , Tensoativos/química , Emulsões , Interações Hidrofóbicas e Hidrofílicas
10.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944722

RESUMO

Toxicity caused by the exposure to human-made chemicals and environmental conditions has become a major health concern because they may significantly increase the formation of reactive oxygen species (ROS), negatively affecting the endogenous antioxidant defense. Living systems have evolved complex antioxidant mechanisms to protect cells from oxidative conditions. Although oxidative stress contributes to various pathologies, the intake of molecules such as polyphenols, obtained from natural sources, may limit their effects because of their antioxidant and antimicrobial properties against lipid peroxidation and against a broad range of foodborne pathogens. Ingestion of polyphenol-rich foods, such as fruits and vegetables, help to reduce the harmful effects of ROS, but the use of supramolecular and nanomaterials as delivery systems has emerged as an efficient method to improve their pharmacological and therapeutic effects. Suitable exogenous polyphenolic antioxidants should be readily absorbed and delivered to sites where pathological oxidative damage may take place, for instance, intracellular locations. Many potential antioxidants have a poor bioavailability, but they can be encapsulated to improve their ideal solubility and permeability profile. Development of effective antioxidant strategies requires the creation of new nanoscale drug delivery systems to significantly reduce oxidative stress. In this review we provide an overview of the oxidative stress process, highlight some properties of ROS, and discuss the role of natural polyphenols as bioactives in controlling the overproduction of ROS and bacterial and fungal growth, paying special attention to their encapsulation in suitable delivery systems and to their location in colloidal systems where interfaces play a crucial role.

11.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641602

RESUMO

Surfactants have been used for decades in the food industry for the preparation of lipid-based emulsified food stuffs. They play two main roles in the emulsification processes: first they decrease the interfacial tension between the oil and water, facilitating droplet deformation and rupture; second, they reduce droplet coalescence by forming steric barriers. However, addition of surfactants to binary oil-water mixtures also brings up the formation of three-dimensional interfacial layers, surrounding each emulsion droplet, that significantly alter chemical reactivity. This is the case, for instance, in the inhibition reaction between antioxidants and the lipid radicals formed in the course of the spontaneous oxidation reaction of unsaturated lipids, which are commonly employed in the preparation of food-grade emulsions. The rate of the inhibition reaction depends on the effective concentrations of antioxidants, which are mostly controlled by the amount of surfactant employed in the preparation of the emulsion. In this work, we analyze the effects of the surfactant Tween 20 on the oxidative stability and on the effective concentrations of two model antioxidants derived from cinnamic acid, determining their interfacial concentrations in the intact emulsions to avoid disrupting the existing equilibria and biasing results. For this purpose, a recently developed methodology was employed, and experimental results were interpreted on the grounds of a pseudophase kinetic model.


Assuntos
Cinamatos/química , Óleo de Milho/química , Ácidos Cumáricos/química , Emulsificantes/química , Emulsões/química , Polissorbatos/química , Tensoativos/química , Antioxidantes/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Tensão Superficial , Água
12.
Biochim Biophys Acta Biomembr ; 1863(12): 183727, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400139

RESUMO

Caffeic acid (CA) has demonstrated a strong intracellular antioxidant ability by scavenging ROS, contributing to the maintenance of cell membrane structural integrity and to reduce oxidative injuries in other cell components. Nevertheless, caffeic acid has limited usage, due to its hydrophilic character. In this work, the introduction of alkyl chains in the caffeic acid molecule by esterification (methyl - C1, ethyl - C2, butyl - C4, hexyl - C6, octyl - C8 and hexadecyl - C16), significantly increased its lipophilicity. All caffeates tested showed a much higher protective activity than caffeic acid against red blood cells (RBCs) AAPH-induced oxidative stress; this protection was heavily dependent on the length of the alkyl chain of the esters, and on their concentration. At 2.5 and 5 µM, the more lipophilic compounds (C8 and C16) showed a remarkable antioxidant activity, inhibiting hemolysis; probably, their better location within the membrane leads to a better antioxidative protection; however, at 50 µM, the more hydrophilic compounds (C1-C4) showed a better activity against hemolysis than the more lipophilic ones (C8-C16). At this higher concentration, the better interaction of the more lipophilic compounds with the membrane seems to cause changes in RBC membrane fluidity, disturbing membrane integrity. Our data show that the antioxidant activity of these compounds could play an important role for the protection of different tissues and organs, by protecting cell membranes from oxidative injuries.


Assuntos
Antioxidantes/química , Ácidos Cafeicos/química , Membrana Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/genética , Eritrócitos/efeitos dos fármacos , Hemólise , Bicamadas Lipídicas/química , Fluidez de Membrana/efeitos dos fármacos , Fosfolipídeos/química , Espécies Reativas de Oxigênio/química
13.
ChemMedChem ; 16(21): 3315-3325, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34342141

RESUMO

Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 µM and Ki =18.96±2.28 µM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Ésteres/farmacologia , Ácidos Picolínicos/farmacologia , Animais , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Ésteres/síntese química , Ésteres/química , Humanos , Modelos Moleculares , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/química , Ratos , Relação Estrutura-Atividade
14.
Molecules ; 26(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361854

RESUMO

Bulk phase chemistry is hardly ever a reasonable approximation to interpret chemical reactivity in compartmentalized systems, because multiphasic systems may alter the course of chemical reactions by modifying the local concentrations and orientations of reactants and by modifying their physical properties (acid-base equilibria, redox potentials, etc.), making them-or inducing them-to react in a selective manner. Exploiting multiphasic systems as beneficial reaction media requires an understanding of their effects on chemical reactivity. Chemical reactions in multiphasic systems follow the same laws as in bulk solution, and the measured or observed rate constant of bimolecular reactions can be expressed, under dynamic equilibrium conditions, in terms of the product of the rate constant and of the concentrations of reactants. In emulsions, reactants distribute between the oil, water, and interfacial regions according to their polarity. However, determining the distributions of reactive components in intact emulsions is arduous because it is physically impossible to separate the interfacial region from the oil and aqueous ones without disrupting the existing equilibria and, therefore, need to be determined in the intact emulsions. The challenge is, thus, to develop models to correctly interpret chemical reactivity. Here, we will review the application of the pseudophase kinetic model to emulsions, which allows us to model chemical reactivity under a variety of experimental conditions and, by carrying out an appropriate kinetic analysis, will provide important kineticparameters.

15.
J Colloid Interface Sci ; 604: 248-259, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271487

RESUMO

HYPOTHESIS: A detailed quantitative description of the effects of antioxidants in inhibiting lipid peroxidation in oil-in-water emulsions can be achieved by determining the relationships between the rates of initiation of the lipid peroxidation reaction, the length of the induction period preceding the propagation step of the radical oxidation process and the effective antioxidant interfacial concentrations. EXPERIMENTS: We successfully prepared and characterized a series of olive oil-in-water nanoemulsions and allowed them to spontaneously oxidize. Their oxidative stability was evaluated by carrying out in the presence, and absence, of antioxidants derived from gallic acid, by monitoring the formation of primary oxidation products with time, by determining the corresponding induction periods, and by determining the effective interfacial concentrations of the antioxidants in the intact emulsions. FINDINGS: Results show that both, the length of the induction periods and the antioxidant interfacial concentrations change concomitantly, increasing with the hydrophobicity of the antioxidant up to a maximum at the octyl derivative; longer aliphatic chains decrease their efficiency. The ratio between the interfacial antioxidant concentration and the induction period remains constant independently of the antioxidant, demonstrating that the effective concentrations of antioxidant at the interface control their efficiencies in emulsions.


Assuntos
Antioxidantes , Água , Emulsões , Cinética , Peroxidação de Lipídeos , Azeite de Oliva , Oxirredução
16.
Foods ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068499

RESUMO

Our previous research was focused on the effects of hydrophobicity on the antioxidant (AO) efficiency of series of homologous antioxidants with the same reactive moieties. In this work we evaluate the antioxidant efficiency of hydrophobic phenolipids in 4:6 olive oil-in-water emulsions, with different phenolic moieties (derived from caffeic, 4-hydroxycinnamic, dihydrocaffeic acids, tyrosol and hydroxytyrosol), with alkyl chains of 8 and 16 carbons, and compare the antioxidant efficiency with that of the parent compounds. All catecholic phenolipids, in particular the C8 derivatives, have proven to be better antioxidants for the oxidative protection of emulsions than their parental compounds with octyl dihydrocafffeate being the most efficient (16-fold increase in relation to the control). To understand the importance of some factors on the antioxidant efficiency of compounds in emulsions, Pearson's correlation analysis was carried out between antioxidant activity and the first anodic potential (Epa), reducing capacity (FRAP value), DPPH radical scavenging activity (EC50) and the concentration of antioxidants in each region of the emulsified system. Results confirm the importance of the effective concentration of AOs in the interfacial region (AOI) (ρ = 0.820) and of the Epa (ρ = -0.677) in predicting their antioxidant efficiency in olive oil-in-water emulsions.

17.
Foods ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807705

RESUMO

The autoxidation of lipids in complex systems such as emulsions or biological membranes, although known to occur readily and to be associated with important pathological events, is lacking in quantitative data in spite of the huge efforts that have been made in attempting to unravel the complex mechanisms of lipid oxidation and its inhibition by antioxidants. Lipids are present as oil-in-water emulsions in many foods and pharmaceutical formulations, and the prevalent role of the interfacial region is critical to understand the antioxidant behavior and to correctly interpret antioxidant efficiencies. The aim of this review is to summarize the current knowledge on the chemical fate of antioxidants before they react with peroxyl radicals. Many researchers highlighted the predominant role of interfaces, and although some attempts have been made to understand their role, in most instances, they were essentially qualitative and based on putative hypotheses. It is only recently that quantitative reports have been published. Indeed, knowledge on the effects of relevant experimental variables on the effective concentrations of antioxidants is necessary for a successful design of alternate, effective antioxidative solutions.

18.
Biochim Biophys Acta Biomembr ; 1863(2): 183505, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278346

RESUMO

Hydroxytyrosol (HT) is a well-known olive oil polyphenol for its high antioxidant capacity and important cardio and neuroprotective effects. However, its use in lipidic systems is limited, due to its hydrophilic character. In this study, we approach the particular structure of xanthophylls and synthetize HT esters specially designed for the protection of liposomal systems. These HT esters contain two polyphenolic moieties separated by a lipophilic alkyl spacer of different length (12, 16 or 22 carbons). To evaluate the antioxidant activity of these compounds against the 2,2'-azobis(2-amidinopropane) hydrochloride induced oxidation, soybean phospholipid liposomes were used. Fluorescence quenching studies were used to assess the insertion of the compounds in the liposomes. The synthetized HT derivatives were able to protect liposomes from induced oxidation when added to the suspensions. The rank of activity was severely influenced by the alkyl chain length of the spacer molecule, being the C12 derivative the most active antioxidant, with an increase in the oxidative stability of liposomes of 2.2 times when compared with the control. The incorporation of compounds during liposome preparation improved the antioxidant capacity of all HT derivatives by about 2.8 times, when compared to the control. This is probably due to a similar transmembrane position with both polyphenolic rings located at the phospholipid polar heads. The synthesis of bis-ester derivatives seems to be a promising strategy to fine-tune antioxidant molecules at biomembranes, thus increasing the oxidative stability of liposomal systems by improving the antioxidant activity of hydrophilic phenolic compounds with high free radical scavenging activity.


Assuntos
Antioxidantes/química , Álcool Feniletílico/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Oxirredução , Álcool Feniletílico/química
19.
Foods ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353202

RESUMO

Reports on the effect of droplet size on the oxidative stability of emulsions and nanoemulsions are scarce in the literature and frequently contradictory. Here, we have employed a set of hydroxytyrosol (HT) esters of different hydrophobicity and fish oil-in-water emulsified systems containing droplets of different sizes to evaluate the effect of the droplet size, surfactant, (ΦI) and oil (ΦO) volume fractions on their oxidative stability. To quantitatively unravel the observed findings, we employed a well-established pseudophase kinetic model to determine the distribution and interfacial concentrations of the antioxidants (AOs) in the intact emulsions and nanoemulsions. Results show that there is a direct correlation between antioxidant efficiency and the concentration of the AOs in the interfacial region, which is much higher (20-200 fold) than the stoichiometric one. In both emulsified systems, the highest interfacial concentration and the highest antioxidant efficiency was found for hydroxytyrosol octanoate. Results clearly show that the principal parameter controlling the partitioning of antioxidants is the surfactant volume fraction, ΦI, followed by the O/W ratio; meanwhile, the droplet size has no influence on their interfacial concentrations and, therefore, on their antioxidant efficiency. Moreover, no correlation was seen between droplet size and oxidative stability of both emulsions and nanoemulsions.

20.
Food Funct ; 11(10): 8670-8679, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32939526

RESUMO

The consumption of extra virgin olive oil (EVOO) has been associated with a lower incidence of cardiovascular diseases partly due to its polyphenol content. The metabolites hydroxytyrosol sulfate and hydroxytyrosol acetate sulfate were shown to be the most concentrated polyphenol metabolites found in plasma after EVOO consumption. Therefore, the capacity of hydroxytyrosol, hydroxytyrosol acetate, homovanillyl alcohol, homovanillyl alcohol acetate and tyrosol sulfate metabolites, to protect red blood cells (RBCs) from oxidative injury induced by the radical initiator 2,2'-azo-bis(2-amidinopropane) dihydrochloride (AAPH) was evaluated. In the presence of AAPH, all non-sulfated compounds and the hydroxytyrosol and hydroxytyrosol acetate monosulfate metabolites showed a significant protective activity against RBCs induced oxidative hemolysis. Moreover, even at 5 µM, the protection was highly significant for hydroxytyrosol acetate, hydroxytyrosol and hydroxytyrosol acetate 3' and 4' monosulfates. The morphological changes of RBC and the nature of their hemoglobin were in accordance with the hemolysis assay. Results showed that a free phenolic hydroxyl group is needed for the antioxidant protection given by compounds. Hydroxytyrosol metabolites present as phase II sulfate conjugates are actually able to protect RBC from oxidative injury by a non-transcriptional mechanism and are likely to contribute for the anti-atherosclerosis properties of regular EVOO consumption.


Assuntos
Antioxidantes/farmacologia , Eritrócitos/efeitos dos fármacos , Hemólise , Azeite de Oliva/química , Estresse Oxidativo , Polifenóis/farmacologia , Sulfatos/farmacologia , Amidinas , Antioxidantes/química , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Oxirredução , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Polifenóis/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Sulfatos/química , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...