Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768798

RESUMO

To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops.


Assuntos
Arabidopsis/metabolismo , Estresse Salino , Tocoferóis/metabolismo , Arabidopsis/fisiologia , Concentração Osmolar , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/metabolismo
2.
Acta Biochim Pol ; 66(3): 249-255, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31279328

RESUMO

The purpose of this research was to obtain recombinant violaxanthin de-epoxidases (VDEs) from two species. The first one was VDE of Arabidopsis thaliana (L.) Heynh. (WT Columbia strain) (AtVDE) which in vivo catalyzes conversion of violaxanthin (Vx) to zeaxanthin (Zx) via anteraxanthin (Ax). The second one was VDE of Phaeodactylum tricornutum Bohlin, 1897 (CCAP 1055/1 strain) (PtVDE) which is responsible for de-epoxidation of diadinoxanthin (Ddx) to diatoxanthin (Dtx). As the first step of our experiments, open reading frames coding for studied enzymes were amplified and subsequently cloned into pET-15b plasmid. For recombinant proteins production Escherichia coli Origami b strain was used. The molecular weight of the produced enzymes were estimated approximately at 45kDa and 50kDa for AtVDE and PtVDE, respectively. Both enzymes, purified under native conditions by immobilized metal affinity chromatography, displayed comparable activity in assay mixture and converted up to 90% Vx in 10 min in two steps enzymatic de-epoxidation, irrespective of enzyme origin. No statistically significant differences were observed when kinetics of the reactions catalyzed by these enzymes were compared. Putative role of selected amino-acid residues of AtVDE and PtVDE was also considered. The significance of the first time obtained recombinant PtVDE as a useful tool in various comparative investigations of de-epoxidation reactions in main types of xanthophyll cycles existing in nature are also indicated.


Assuntos
Arabidopsis/enzimologia , Diatomáceas/enzimologia , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Códon/genética , Diatomáceas/genética , Cinética , Fases de Leitura Aberta/genética , Fitoplâncton/enzimologia , Pigmentos Biológicos/metabolismo , Plasmídeos , Proteínas Recombinantes/metabolismo , Xantofilas/metabolismo
3.
Naunyn Schmiedebergs Arch Pharmacol ; 392(10): 1257-1264, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172223

RESUMO

Cutaneous melanoma is least common (only about 1% of skin cancers) but is the deadliest malignant tumor. Moreover, amelanotic types of melanoma are very difficult for clinical diagnosis. The standard therapy can cause a lot of side effects, e.g., nausea, vomiting, and headaches, which means that novel and effective strategies are required. Interestingly, phenothiazine derivatives possess sedative, antiemetic, and anticancer activity. Our goal was to determine the effect of perphenazine and prochlorperazine on cell viability, motility, microphthalmia-associated transcription factor (MITF) and tyrosinase content in melanotic and amelanotic melanoma cells. The viability of C32 and COLO829 melanoma cells was evaluated by the WST-1 colorimetric assay; impact on motility of human melanoma was performed by wound-healing assay, while tyrosinase and MITF content were determined by Western blot. In the present study, we explore the anticancer effect of perphenazine and prochlorperazine in human melanotic (COLO829) and amelanotic (C32) melanoma cells concluding that prochlorperazine inhibits cell viability in a concentration-dependent manner, impairs motility, and decreases tyrosinase and MITF amounts. Moreover, the analyzed drugs decrease/increase MITF amount depending on the type of melanoma. We demonstrated that the decrease of MITF and tyrosinase protein induces motility inhibition of C32 cells, which suggests the ability of those drugs to restore cancer cell sensitivity to treatment. The ability of prochlorperazine to contain the spread of the amelanotic melanoma in vivo may be helpful in the development of a new and effective antimelanoma therapies.


Assuntos
Melanoma/tratamento farmacológico , Perfenazina/farmacologia , Proclorperazina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Perfenazina/administração & dosagem , Proclorperazina/administração & dosagem , Neoplasias Cutâneas/patologia
4.
Plant Cell Environ ; 42(4): 1270-1286, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362127

RESUMO

The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."


Assuntos
Diatomáceas/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Epóxi/metabolismo , Fotossíntese , Espectrometria de Fluorescência , Temperatura
5.
Acta Biochim Pol ; 60(4): 857-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24432346

RESUMO

In the diadinoxanthin cycle the epoxy group is removed from diadinoxanthin and diatoxanthin is created. This conversion takes place e.g. in diatoms with the involvement of the enzyme diadinoxanthin de-epoxidase. In one of the diatom species, Phaeodactylum tricornutum (CCAP 1055/1 strain with genome sequenced) three de-epoxidase genes (PtVDE, PtVDL1, PtVDL2) have been identified, but only one of them (PtVDE) corresponds to violaxanthin de-epoxidase, an enzyme which is commonly found in higher plants. In these studies, the expression of two de-epoxidase genes of another Phaeodactylum tricornutum strain (UTEX 646), which is commonly used in diatom studies, were obtained in Origami b and BL21 E. coli strains. The molecular masses of the mature proteins are about 49 kDa and 60 kDa, respectively, for VDE and VDL2. Both enzymes are active with violaxanthin as a substrate.


Assuntos
Diatomáceas/genética , Regulação da Expressão Gênica/genética , Oxirredutases/biossíntese , Escherichia coli/genética , Oxirredutases/química , Oxirredutases/genética , Xantofilas/química , Xantofilas/metabolismo
6.
Acta Biochim Pol ; 60(4): 861-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24432347

RESUMO

The effect of optimal and stress temperatures on the growth kinetics of the Phaeodactylum tricornutum CCAP/1055/1 strain (a model diatom with a known genome sequence) in batch cultures was examined. The analysis of the obtained results showed two phases of culture growth. There were significant positive correlations between OD increase of chlorophyll a chlorophyll c and protein concentration at different temperatures. The Fv/Fm parameter achieved a maximum level on the 6(th) or 7(th) day and then decreased to the values registered on the first day of observation. Genetic material undergoes gradual degradation 10 days after inoculation. The size of the cells was invariable.


Assuntos
Técnicas de Cultura Celular por Lotes , Clorofila/biossíntese , Diatomáceas/crescimento & desenvolvimento , Clorofila/genética , Diatomáceas/citologia , Diatomáceas/genética , Temperatura
7.
Acta Biochim Pol ; 59(1): 105-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428135

RESUMO

Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.


Assuntos
Xantofilas/metabolismo , Arabidopsis/metabolismo , Galactolipídeos/metabolismo , Oxirredutases/metabolismo , Zeaxantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...