Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(7): 1287-1301, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581661

RESUMO

For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.


Assuntos
Malária , Plasmodium chabaudi , Animais , Virulência , Plasmodium chabaudi/genética , Plasmodium chabaudi/patogenicidade , Plasmodium chabaudi/fisiologia , Malária/transmissão , Malária/parasitologia , Malária/prevenção & controle , Interações Hospedeiro-Parasita , Evolução Biológica , Eritrócitos/parasitologia , Modelos Biológicos
2.
Ecology ; 104(5): e4022, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890666

RESUMO

Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6-month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.


Assuntos
Plantas , Sementes , Estações do Ano , Reprodução , Fatores de Tempo , Mudança Climática
3.
PLoS Pathog ; 15(12): e1008218, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790509

RESUMO

Dengue virus (DENV) transmission by mosquitoes is a time-dependent process that begins with the consumption of an infectious blood-meal. DENV infection then proceeds stepwise through the mosquito from the midgut to the carcass, and ultimately to the salivary glands, where it is secreted into saliva and then transmitted anew on a subsequent bite. We examined viral kinetics in tissues of the Aedes aegypti mosquito over a finely graded time course, and as per previous studies, found that initial viral dose and serotype strain diversity control infectivity. We also found that a threshold level of virus is required to establish body-wide infections and that replication kinetics in the early and intermediate tissues do not predict those of the salivary glands. Our findings have implications for mosquito GMO design, modeling the contribution of transmission to vector competence and the role of mosquito kinetics in the overall DENV epidemiological landscape.


Assuntos
Vírus da Dengue , Dengue/virologia , Interações Hospedeiro-Parasita/fisiologia , Mosquitos Vetores/virologia , Aedes , Animais , Cinética , Replicação Viral
4.
Parasit Vectors ; 12(1): 189, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036065

RESUMO

BACKGROUND: Tick-borne diseases have been increasing at the local, national, and global levels. Researchers studying ticks and tick-borne diseases need a thorough knowledge of the pathogens, vectors, and epidemiology of disease spread. Both active and passive surveillance approaches are typically used to estimate tick population size and risk of tick encounter. Our data consists of a composite of active and long-term passive surveillance, which has provided insight into spatial variability and temporal dynamics of ectoparasite communities and identified rarer tick species. We present a retrospective analysis on compiled data of ticks from Pennsylvania over the last 117 years. METHODS: We compiled data from ticks collected during tick surveillance research, and from citizen-based submissions. The majority of the specimens were submitted by citizens. However, a subset of the data was collected through active methods (flagging or dragging, or removal of ticks from wildlife). We analyzed all data from 1900-2017 for tick community composition, host associations, and spatio-temporal dynamics. RESULTS: In total there were 4491 submission lots consisting of 7132 tick specimens. Twenty-four different species were identified, with the large proportion of submissions represented by five tick species. We observed a shift in tick community composition in which the dominant species of tick (Ixodes cookei) was overtaken in abundance by Dermacentor variabilis in the early 1990s and then replaced in abundance by I. scapularis. We analyzed host data and identified overlaps in host range amongst tick species. CONCLUSIONS: We highlight the importance of long-term passive tick surveillance in investigating the ecology of both common and rare tick species. Information on the geographical distribution, host-association, and seasonality of the tick community can help researchers and health-officials to identify high-risk areas.


Assuntos
Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/fisiologia , Animais , Animais Selvagens/parasitologia , Dermacentor/fisiologia , Monitoramento Epidemiológico , História do Século XX , História do Século XXI , Humanos , Ixodes/fisiologia , Pennsylvania/epidemiologia , Estudos Retrospectivos , Análise Espacial , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/história , Doenças Transmitidas por Carrapatos/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...