Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(6): 1442-1457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695731

RESUMO

Microplastic pollution threatens some of the world's most iconic locations for marine biodiversity, including the remote Galápagos Islands, Ecuador. Using the Galápagos penguin (Spheniscus mendiculus) as a sentinel species, the present study assessed microplastics and suspected anthropogenic cellulose concentrations in surface seawater and zooplankton near Santa Cruz and Galápagos penguin colonies (Floreana, Isabela, Santiago), as well as in penguin potential prey (anchovies, mullets, milkfish) and penguin scat. On average, 0.40 ± 0.32 microplastics L-1 were found in surface seawater (<10 µm; n = 63 L), while 0.003, 0.27, and 5.12 microplastics individual-1 were found in zooplankton (n = 3372), anchovies (n = 11), and mullets (n = 6), respectively. The highest concentration (27 microplastics individual-1) was observed in a single milkfish. Calculations based on microplastics per gram of prey, in a potential diet composition scenario, suggest that the Galápagos penguin may consume 2881 to 9602 microplastics daily from prey. Despite this, no microplastics or cellulose were identified in 3.40 g of guano collected from two penguins. Our study confirms microplastic exposure in the pelagic food web and endangered penguin species within the UNESCO World Heritage site Galápagos Islands, which can be used to inform regional and international policies to mitigate plastic pollution and conserve biodiversity in the global ocean. Environ Toxicol Chem 2024;43:1442-1457. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Celulose , Monitoramento Ambiental , Cadeia Alimentar , Microplásticos , Spheniscidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Equador , Zooplâncton/efeitos dos fármacos , Água do Mar/química
2.
PLoS One ; 19(1): e0296788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265981

RESUMO

Bioaccumulation and biomagnification of anthropogenic particles are crucial factors in assessing microplastic impacts to marine ecosystems. Microplastic pollution poses a significant threat to iconic and often endangered species but examining their tissues and gut contents for contaminant analysis via lethal sampling is challenging due to ethical concerns and animal care restrictions. Incorporating empirical data from prey items and fecal matter into models can help trace microplastic movement through food webs. In this study, the Galápagos penguin food web served as an indicator species to assess microplastic bioaccumulation and biomagnification potential using trophodynamic Ecopath with Ecosim (EwE) modelling with Ecotracer. Empirical data collected from surface seawater near Galápagos penguin colonies, zooplankton, penguin prey, and penguin scat in October 2021 were used to inform the ecosystem model. Multiple scenarios, including a 99% elimination rate, were employed to assess model sensitivity. Model predictions revealed that microplastics can bioaccumulate in all predator-prey relationships, but biomagnification is highly dependent on the elimination rate. It establishes the need for more research into elimination rates of different plastics, which is a critical missing gap in current microplastic ecotoxicological and bioaccumulation science. Compared to empirical data, modelling efforts underpredicted microplastic concentrations in zooplankton and over-predicted concentrations in fish. Ultimately, the ecosystem modelling provides novel insights into potential microplastics' bioaccumulation and biomagnification risks. These findings can support regional marine plastic pollution management efforts to conserve native and endemic species of the Galápagos Islands and the Galápagos Marine Reserve.


Assuntos
Ecossistema , Spheniscidae , Animais , Bioacumulação , Microplásticos , Plásticos , Zooplâncton
3.
Biol Lett ; 19(12): 20230274, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38053363

RESUMO

Salpa thompsoni is an important grazer in the Southern Ocean and most abundant in the Antarctic Polar Front (APF) region. During recent decades, their distribution expanded southwards. However, it is unclear whether salps can maintain their populations in the high Antarctic regions throughout the year owing to a poor understanding of their physiological responses to changing environmental conditions. We examined gene expression signatures of salps collected in two geographically close regions south of the APF that differed in water mass composition and productivity. The observed differences in the expression of genes related to reproductive, cellular and metabolic processes reflect variations in water temperature and food supply between the two regions studied here. Our study contributes to a better understanding of the physiological responses of S. thompsoni to changing environmental conditions, and how the species may adapt to a changing environment through potential geographical population shifts under future climate change scenarios.


Assuntos
Reprodução , Água , Regiões Antárticas , Expressão Gênica
4.
Sci Rep ; 13(1): 7088, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127731

RESUMO

Salpa thompsoni is an important grazer in the Southern Ocean. Their abundance in the western Antarctic Peninsula is highly variable, varying by up to 5000-fold inter-annually. Here, we use a particle-tracking model to simulate the potential dispersal of salp populations from a source location in the Antarctic Circumpolar Current (ACC) to the Palmer Long Term Ecological Research (PAL LTER) study area. Tracking simulations are run from 1998 to 2015, and compared against both a stationary salp population model simulated at the PAL LTER study area and observations from the PAL LTER program. The tracking simulation was able to recreate closely the long-term trend and the higher abundances at the slope stations. The higher abundances observed at slope stations are likely due to the advection of salp populations from a source location in the ACC, highlighting the significant role of water mass circulation in the distribution and abundance of Southern Ocean salp populations.

5.
Biology (Basel) ; 11(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892956

RESUMO

The freshwater jellyfish Craspedacusta sowerbii is among the most widespread invasive species, observed across a wide temperature range. The aim of this study is to analyze the polyp and medusa stages response to different temperatures by using (i) an experimental study on the polyp colony growth at 19 and 29 °C, and (ii) prediction of the Thermal Habitat Suitability (THS) based on the thermal tolerance of the medusa stage. The total number of polyps and colonies was greater at high temperature. At 19 °C, colonies with 1 to 5 polyps were present, with colonies of 1 to 3 polyps numerically dominating. At 29 °C, colonies were 80% composed of 1- to 2-polyps. Based on the published medusa pulsation rhythm data, a Thermal Performance Curve (TPC) regression was performed and used to monthly predict the THS for current and future (2050 and 2100) scenarios. The southern hemisphere offered optimal conditions (THS > 0.6) year-round. In the northern hemisphere, the optimum period was predicted to be between June and September. The future THS were considerably larger than at present with an increase in optimal THS at higher latitudes (up to 60° N). The combination of experimental and modeling approaches allows to identify the optimal thermal conditions of the polyp and medusa stages and to predict their invasive capacities.

6.
Glob Chang Biol ; 28(4): 1359-1375, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921477

RESUMO

Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70-year period of rapid warming (1920s-1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5-1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate-ready marine protected areas should include these key areas of future habitat.


Assuntos
Euphausiacea , Animais , Regiões Antárticas , Clima , Ecossistema , Euphausiacea/fisiologia , Camada de Gelo
7.
Nat Commun ; 12(1): 7168, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887407

RESUMO

Krill and salps are important for carbon flux in the Southern Ocean, but the extent of their contribution and the consequences of shifts in dominance from krill to salps remain unclear. We present a direct comparison of the contribution of krill and salp faecal pellets (FP) to vertical carbon flux at the Antarctic Peninsula using a combination of sediment traps, FP production, carbon content, microbial degradation, and krill and salp abundances. Salps produce 4-fold more FP carbon than krill, but the FP from both species contribute equally to the carbon flux at 300 m, accounting for 75% of total carbon. Krill FP are exported to 72% to 300 m, while 80% of salp FP are retained in the mixed layer due to fragmentation. Thus, declining krill abundances could lead to decreased carbon flux, indicating that the Antarctic Peninsula could become a less efficient carbon sink for anthropogenic CO2 in future.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Euphausiacea/metabolismo , Água do Mar/análise , Animais , Regiões Antárticas , Fezes/química
8.
PeerJ ; 9: e12238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721967

RESUMO

The temporal dynamics of five copepod species common to coastal waters of the Pacific Northwest were examined in relation to variability in spring temperature and phytoplankton dynamics in 2008, 2009, and 2010 in Rivers Inlet, British Columbia, Canada. The five species were differentiated by life history strategies. Acartia longiremis, Metridia pacifica, and Paraeuchaeta elongata remained active over most of the year. By contrast, the reproductive effort of Eucalanus bungii and Calanus marshallae was concentrated over the spring period and they spent most of the year in diapause as C5 copepodites. A delay in the timing of the spring bloom was associated with a shift in the phenology of all species. However, following the delay in spring bloom timing, recruitment to the G1 cohort was reduced only for E. bungii and C. marshallae. Recruitment successes of E. bungii and C. marshallae was also drastically reduced in 2010, an El Niño year, when spring temperatures were highest. Reasons for the observed differential response to spring environmental forcing, and its effect on upper trophic levels, are discussed.

9.
Sci Rep ; 11(1): 23099, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845271

RESUMO

The freshwater jellyfish Craspedacusta sowerbii is one of the most widespread invasive species, but its global distribution remains uncertain due to ephemeral appearances and general lack of information in various aquatic environments. The aim of this study was to map current and future distributions (2050 and 2100) using Species Distribution Models allowing to visualize the habitat suitability and make projections of its changes under potential climate change scenarios. Except in Oceania where the range decreased, an expansion of C. sowerbii was projected during the next century under modeled future scenarios being most intensive during the first half of the century. The present study shows that the expansion of C. sowerbii worldwide would be facilitated mainly by precipitation, vapor pressure, and temperature. The predictions showed that this species over the eighty years will invade high-latitude regions in both hemispheres with ecological consequences in already threatened freshwater ecosystems.

10.
Commun Biol ; 4(1): 1061, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508174

RESUMO

Over the past decades, two key grazers in the Southern Ocean (SO), krill and salps, have experienced drastic changes in their distribution and abundance, leading to increasing overlap of their habitats. Both species occupy different ecological niches and long-term shifts in their distributions are expected to have cascading effects on the SO ecosystem. However, studies directly comparing krill and salps are lacking. Here, we provide a direct comparison of the diet and fecal pellet composition of krill and salps using 18S metabarcoding and fatty acid markers. Neither species' diet reflected the composition of the plankton community, suggesting that in contrast to the accepted paradigm, not only krill but also salps are selective feeders. Moreover, we found that krill and salps had broadly similar diets, potentially enhancing the competition between both species. This could be augmented by salps' ability to rapidly reproduce in favorable conditions, posing further risks to krill populations.


Assuntos
Euphausiacea/fisiologia , Urocordados/fisiologia , Animais , Dieta , Ácidos Graxos/análise , RNA Ribossômico 18S/análise
12.
Ecol Evol ; 10(23): 13555-13570, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304559

RESUMO

The stock-specific distribution of maturing salmon in the North Pacific has been a persistent information gap that has prevented us from determining the ocean conditions experienced by individual stocks. This continues to impede understanding of the role of ocean conditions in stock-specific population dynamics. We assessed scale archives for 17 sockeye salmon (Oncorhynchus nerka) stocks covering the entire North Pacific, from the Columbia River (Washington State and British Columbia) to Kamchatka Peninsula (Russia), to infer salmon locations during their last growing season before returning to their spawning grounds. The approach used, first pioneered in salmon stocks in the Atlantic, relies on the relationship between temporal changes in δ13C in salmon scales and sea surface temperature to estimate salmon distribution based on correlation strength. An advantage of this approach is that it does not require fish sampling at sea, but relies on existing fishery agency collections of salmon scales. Significant correlations were found for 7 of the stocks allowing us to propose plausible feeding grounds. Complementary information from δ15N, historical tagging studies, and connectivity analysis were used to further refine distribution estimates. This study is a first step toward estimating stock-specific distributions of salmon in the North Pacific and provides a basis for the application of the approach to other salmon scale archives. This information has the potential to improve our ability to relate stock dynamics to ocean conditions, ultimately enabling improved stock management. For example, our estimated distributions of Bristol Bay and NE Pacific stocks demonstrated that they occupy different areas with a number of the former being distributed in the high productivity shelf waters of the Aleutian Islands and Bering Sea. This may explain why these stocks seem to have responded differently to changes in ocean conditions, and the long-term trend of increased productivity of Bristol Bay sockeye.

13.
14.
Sci Data ; 7(1): 332, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024126

RESUMO

The North Pacific Marine Salmon Diet Database is an open-access relational database built to centralize and make accessible salmon diet data through a standardized database structure. The initial data contribution contains 21,862 observations of salmon diet, and associated salmon biological parameters, prey biological parameters, and environmental data from the North Pacific Ocean. The data come from 907 unique spatial areas and mostly fall within two time periods, 1959-1969 and 1987-1997, during which there are more data available compared to other time periods. Data were extracted from 62 sources identified through a systematic literature review, targeting peer-reviewed and gray literature. The purpose of this database is to consolidate data into a common format to address gaps in our ecological understanding of the North Pacific Ocean, particularly with respect to salmon. This database can be used to address a variety of questions regarding salmon foraging, productivity, and marine survival. The North Pacific Marine Salmon Diet Database will continue to grow in the future as more data are digitized and become available.


Assuntos
Dieta/veterinária , Salmão , Animais , Bases de Dados Factuais , Oceano Pacífico
15.
Science ; 368(6496): 1243-1247, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32527830

RESUMO

Predator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services. The diverse social and economic consequences of this trophic cascade are unknown, particularly across large regions. We developed and applied a trophic model to predict these impacts on four ecosystem services. Results suggest that sea otter presence yields 37% more total ecosystem biomass annually, increasing the value of finfish [+9.4 million Canadian dollars (CA$)], carbon sequestration (+2.2 million CA$), and ecotourism (+42.0 million CA$). To the extent that these benefits are realized, they will exceed the annual loss to invertebrate fisheries (-$7.3 million CA$). Recovery of keystone predators thus not only restores ecosystems but can also affect a range of social, economic, and ecological benefits for associated communities.


Assuntos
Recuperação e Remediação Ambiental , Cadeia Alimentar , Kelp/crescimento & desenvolvimento , Lontras , Comportamento Predatório , Animais , Biomassa , Sequestro de Carbono , Pesqueiros , Herbivoria , Atividades Humanas , Frutos do Mar
16.
17.
PLoS One ; 13(7): e0196307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979718

RESUMO

This paper analyzes the trophic role of Pacific herring, the potential consequences of its depletion, and the impacts of alternative herring fishing strategies on a Northeast Pacific food web in relation to precautionary, ecosystem-based management. We used an Ecopath with Ecosim ecosystem model parameterized for northern British Columbia (Canada), employing Ecosim to simulate ecosystem effects of herring stock collapse. The ecological impacts of various herring fishing strategies were investigated with a Management Strategy Evaluation algorithm within Ecosim, accounting for variability in climatic drivers and stock assessment errors. Ecosim results suggest that herring stock collapse would have cascading impacts on much of the pelagic food web. Management Strategy Evaluation results indicate that herring and their predators suffer moderate impacts from the existing British Columbia harvest control rule, although more precautionary management strategies could substantially reduce these impacts. The non-capture spawn-on-kelp fishery, traditionally practiced by many British Columbia and Alaska indigenous peoples, apparently has extremely limited ecological impacts. Our simulations also suggest that adopting a maximum sustainable yield management strategy in Northeast Pacific herring fisheries could generate strong, cascading food web effects. Furthermore, climate shifts, especially when combined with herring stock assessment errors, could strongly reduce the biomasses and resilience of herring and its predators. By clarifying the trophic role of Pacific herring, this study aims to facilitate precautionary fisheries management via evaluation of alternative fishing strategies, and thereby to inform policy tradeoffs among multiple ecological and socioeconomic factors.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Peixes/fisiologia , Animais , Pesqueiros , Oceano Pacífico , Dinâmica Populacional , Alimentos Marinhos
18.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29035257

RESUMO

This study aimed to create the first model of biological iron (Fe) cycling in the Southern Ocean food web. Two biomass mass-balanced Ecopath models were built to represent pre- and post-whaling ecosystem states (1900 and 2008). Functional group biomasses (tonnes wet weight km-2) were converted to biogenic Fe pools (kg Fe km-2) using published Fe content ranges. In both models, biogenic Fe pools and consumption in the pelagic Southern Ocean were highest for plankton and small nektonic groups. The production of plankton biomass, particularly unicellular groups, accounted for the highest annual Fe demand. Microzooplankton contributed most to biological Fe recycling, followed by carnivorous zooplankton and krill. Biological Fe recycling matched previous estimates, and, under most conditions, could entirely meet the Fe demand of bacterioplankton and phytoplankton. Iron recycling by large baleen whales was reduced 10-fold by whaling between 1900 and 2008. However, even under the 1900 scenario, the contribution of whales to biological Fe recycling was negligible compared with that of planktonic consumers. These models are a first step in examining oceanic-scale biological Fe cycling, highlighting gaps in our present knowledge and key questions for future research on the role of marine food webs in the cycling of trace elements in the sea.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.


Assuntos
Ecossistema , Ferro , Oceanos e Mares , Baleias , Animais , Biologia Marinha
19.
PLoS One ; 9(12): e114978, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517505

RESUMO

The aim of this study was to examine the ecological plausibility of the "krill surplus" hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopath model of the Southern Ocean food web existing in 1900. The rorqual depletion trajectory was then used in an Ecosim scenario to drive rorqual biomasses and examine the "krill surplus" phenomenon and whaling effects on the food web in the years 1900-2008. An additional suite of Ecosim scenarios reflecting several hypothetical trends in Southern Ocean primary productivity were employed to examine the effect of bottom-up forcing on the documented krill biomass trend. The output of the Ecosim scenarios indicated that while the "krill surplus" hypothesis is a plausible explanation of the biomass trends observed in some penguin and pinniped species in the mid-20th century, the excess krill biomass was most likely eliminated by a rapid decline in primary productivity in the years 1975-1995. Our findings suggest that changes in physical conditions in the Southern Ocean during this time period could have eliminated the ecological effects of rorqual depletion, although the mechanism responsible is currently unknown. Furthermore, a decline in iron bioavailability due to rorqual depletion may have contributed to the rapid decline in overall Southern Ocean productivity during the last quarter of the 20th century. The results of this study underscore the need for further research on historical changes in the roles of top-down and bottom-up forcing in structuring the Southern Ocean food web.


Assuntos
Euphausiacea , Cadeia Alimentar , Modelos Teóricos , Baleias , Animais , Regiões Antárticas , Biomassa
20.
Trends Ecol Evol ; 29(6): 309-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24755099

RESUMO

'Wasp-waist' systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.


Assuntos
Biomassa , Euphausiacea/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Cadeia Alimentar , Gafanhotos/crescimento & desenvolvimento , Animais , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...