Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12652, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477776

RESUMO

Three new polymorphs of aluminosilicate paracelsian, BaAl2Si2O8, have been discovered using synchrotron-based in situ high-pressure single crystal X-ray diffraction. The first isosymmetric phase transition (from paracelsian-I to paracelsian-II) occurs between 3 and 6 GPa. The phase transition is associated with the formation of pentacoordinated Al3+ and Si4+ ions, which occurs in a stepwise fashion by sequential formation of Al-O and Si-O bonds additional to those in AlO4 and SiO4 tetrahedra, respectively. The next phase transition occurs between 25 and 28 GPa and is accompanied by the symmetry change from monoclinic (P21/c) to orthorhombic (Pna21). The structure of paracelsian-III consists of SiO6 octahedra, AlO6 octahedra and distorted AlO4 tetrahedra, i.e. the transition is reconstructive and associated with the changes of Si4+ and Al3+ coordination, which show rather complex behaviour with the general tendency towards increasing coordination numbers. The third phase transition is observed between 28 and 32 GPa and results in the symmetry decreasing from Pna21 to Pn. The transition has a displacive character. In the course of the phase transformation pathway up to 32 GPa, the structure of polymorphs becomes denser: paracelsian-II is based upon elements of cubic and hexagonal close-packing arrangements of large O2- and Ba2+ ions, whereas, in the crystal structure of paracelsian-III and IV, this arrangement corresponds to 9-layer closest-packing with the layer sequence ABACACBCB.

2.
Nat Commun ; 9(1): 4142, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297769

RESUMO

A Verwey-type charge-ordering transition in magnetite at 120 K leads to the formation of linear units of three iron ions with one shared electron, called trimerons. The recently-discovered iron pentoxide (Fe4O5) comprising mixed-valent iron cations at octahedral chains, demonstrates another unusual charge-ordering transition at 150 K involving competing formation of iron trimerons and dimerons. Here, we experimentally show that applied pressure can tune the charge-ordering pattern in Fe4O5 and strongly affect the ordering temperature. We report two charge-ordered phases, the first of which may comprise both dimeron and trimeron units, whereas, the second exhibits an overall dimerization involving both the octahedral and trigonal-prismatic chains of iron in the crystal structure. We link the dramatic change in the charge-ordering pattern in the second phase to redistribution of electrons between the octahedral and prismatic iron chains, and propose that the average oxidation state of the iron cations can pre-determine a charge-ordering pattern.

3.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 12): i87, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21578542

RESUMO

The title compound, Cs(3)(Mo(2)O(7))Br, was synthesized by the reaction of CsNO(3), MoO(3) and 1-ethyl-3-methyl-imidazolium bromide. Its crystal structure is isotypic with K(3)(Mo(2)O(7))Br and contains (MoO(4))(2-) tetra-hedra which share an O atom to produce a [Mo(2)O(7)](2-) dimolybdate(VI) anion with a linear bridging angle and m2 symmetry. The anions are linked by Cs atoms (site symmetry m2), forming sheets parallel to (001). Br atoms (site symmetry m2) are also part of this layer. Another type of Cs atom (3m site symmetry) is located in the inter-layer space and connects the layers via Cs-O and Cs-Br inter-actions into a three-dimensional array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...