Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(2): e08943, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243065

RESUMO

Sclerotium rolfsii Sacc. the causative agent of white rot is one of the destructive pathogens of nightshade crops. In Côte d'Ivoire, this fungal pathogen constitutes a major constraint for the cultivation of tomato (Solanum lycopersicum) with 41.01% crop losses in humid forest areas. Controlling this fungus with synthetic chemicals can be effective, but harmful to human health and the environment. The use of biological control agents could be an alternative approach to control S. rolfsii. In this perspective, the objective of this work was to select fungi from the rhizosphere of tomato crops capable of inhibiting the growth of S. rolfsii. To do this, 153 fungi were isolated from the rhizosphere and from direct confrontation tests 10 fungi whose antagonistic power of S. rolfsii varied between 27 and 60% were selected. Molecular identification (ITS) of these antagonist fungi revealed that the isolates belonged to the genera Talaromyces sp. (n = 4), Trichoderma sp. (n = 3), Penicillium sp. (n = 2) and Clonostachys sp. (n = 1). Among these fungi, Talaromyces purpureogenus and Talaromyces assiutensis were able to diffuse compounds in agar capable of inhibiting the growth of S. rolfsii. The chemical study of these 2 fungi made it possible to identify mitorubrin and mitorubrinol produced by T. purpureogenus and spiculisporic acid produced by T. assiutensis. Mitorubrin and mitorubrinol had inhibitory activities of 100 and 70% at 10 mg/mL, respectively, whereas spiculisporic acid showed moderate inhibition of 38 at 20 mg/mL of the growth of S. rolfsii; however, its abundant production by the fungus could be an advantage in the control of this phytopathogen. Isolated from the same biotope as S. rolfsii, T. purpureogenus and T. assiutensis represent favorable candidates for the biological control against S. rolfsii.

2.
Bioorg Chem ; 112: 104959, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971564

RESUMO

Biotransformation of viridin, an antifungal produced by biocontrol agent, with non-viridin producing microorganisms is studied. The results show that some environmental non-targeted microorganisms are able to reduce it in the known phytotoxin viridiol, and its 3-epimer. Consequently, this reduction, which happens in some cases by detoxification mechanism, could be disastrous for the plant in a biocontrol of plant disease. However, a process fermentation/biotransformation could be an efficient approach for the preparation of this phytotoxin.


Assuntos
Androstenodióis/farmacologia , Androstenos/farmacologia , Antifúngicos/farmacologia , Bacteriocinas/farmacologia , Hypocrea/efeitos dos fármacos , Androstenodióis/química , Androstenodióis/metabolismo , Androstenos/química , Androstenos/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Biotransformação , Relação Dose-Resposta a Droga , Fermentação/efeitos dos fármacos , Hypocrea/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Environ Sci Pollut Res Int ; 25(30): 29901-29909, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28965291

RESUMO

Cocoa production is affected by the black pod disease caused by several Phytophthora species that bring, about each year, an estimated loss of 44% of world production. Chemical control remains expensive and poses an enormous risk of poisoning for the users and the environment. Biocontrol by using antagonistic microorganisms has become an alternative to the integrated control strategy against this disease. Trichoderma viride T7, T. harzanium T40, and T. asperellum T54, which showed in vivo and in vitro antagonistic activity against P. palmivora, were cultured and mycelia extracted. Inhibition activity of crude extracts was determined, and then organic compounds were isolated and characterized. The in vitro effect of each compound on the conidia germination and mycelia growth of four P. palmivora, two P. megakaria, and one P. capsici was evaluated. T. viride that displayed best activities produced two active metabolites, viridin and gliovirin, against P. palmivora and P. megakaria strains. However, no activity against P. capsici was observed. Besides being active separately, these two compounds have a synergistic effect for both inhibitions, mycelia growth and conidia germination. These results provide the basis for the development of a low-impact pesticide based on a mixture of viridin and gliovirine.


Assuntos
Cacau/microbiologia , Fungicidas Industriais/metabolismo , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Trichoderma/química , Fungicidas Industriais/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Metabolismo Secundário , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...